実データを用いた ATLASレベル2ミューオントリガー のコミッショニング

所属:東大理 高工研^A 神戸大理^B 神戸大自然^C 東工大^D ハンブルク大^E

道前武 奥山豊信 小森雄斗 徳宿克夫^A 長野邦浩^A 石川明正^B 岡田勝吾^B 越智敦彦^B 蔵重久弥^B 吹田航一^B 谷和俊^B 早川俊^B 山崎祐司^B 松下崇^C 管野貴之^D 久世正弘^D 河野能知^E Atlas-JapanHLTグループ

2010年9月14日 日本物理学会 秋季大会

ATLAS Muon Trigger System

ATLASのMuon Trigger →3段階のTrigger

1.Level1 Trigger

•Hardwareのtrigger

- •L1をpass→L2にmuonの大まかな位置とどの
- thresholdをpassしたかを含む情報(Rol)が送られる

2.Level2 Trigger

- •Softwareのtrigger
- •Rol付近のドリフトチューブミューオン飛跡検出器 (MDT)、内部飛跡検出器(Inner Detector(ID))の情報 も使用
- →更に精度良くmuonの運動量、位置を測定
- •p_Tがあるthresholdを超えるmuonを選別

3.Event Filter

- •Softwareのtrigger
- •L2より更に時間をかけてmuonを再構成し選別

L2とEF(Event Filter)

1.外側に設置されたミューオン検出器のみを使った (Muon Standalone(MuonSA))trigger

2.IDとミューオン検出器を組み合わせた(Muon Combined(MuonCB))trigger

SA、ID、CB(SAとIDをmatching)でmuonを再構成

今回の発表

•実データを使ってL2 MuonSAの性能を検証する

- 1. Efficiencyの測定
- 2. p_T resolutionの測定
- 3. Thresholdの再設定

<u>Data</u>

•Collision data

✓重心系エネルギー7TeVでの陽子・陽子衝突のdata

✓L1 Muon Trigger(L1_MU0)でtriggerされたdata(Integrated luminosity=~90nb⁻¹)

✓Inclusive muon (exclusive muonを使った解析→管野talk(14aSM1))

•Monte Carlo sample

重心系エネルギー7TeVでの陽子・陽子衝突のMinimum bias sample(Genelator: Pythia6) Dataのselection

•Event selection

✓# of track from vtx \ge 3

✓ | Primary vtx Z | < 150[mm]</p>

•Offline muon(MuonCB)とmatchingのとれたRol(ΔR<0.5)を見る

•Offline muon(MuonCB) selection

✓IDとSAのtrackのmatching x² < 50 (CB)

✓ p>4[GeV] & p_T>2[GeV] (CB)

✓ # of PIX hit \ge 1 & # of SCT hit \ge 6 (ID)

✓ | extrapolated vtx Z - Primary vtx Z | <10[mm] (ID)

•Reference p_T: Offline muon(MuonSA)のp_T (inflight decay muonによるIDとSAでのp_Tのずれの影響を減らす)

Offline Muon 青:ID 赤:SA 赤+青:CB L2 Trigger Efficiency

•End-cap: Threshold(4GeV)でのefficiencyがやや低い
 →Thresholdのチューニングが必要(後述)

The Residual of the p_T Mesurement (Barrel)

•MC: p_Tが高くなるにつれて細くなる •Data: p_Tが高くなっても細くならない →study中

The Residual of the p_T Mesurement (End-cap)

•Low p_Tでmeanが大きくshift →study中

p_T resolution and p_T mean

•p_T resolution: 前ページの分布をgaussianでfit→幅(σ)
 •p_T mean: 前ページの分布gaussianでfit→Meanの位置

•Barrel: MC→p_Tが高くなると良くなる(~2%@8-20GeV)

data→p_Tが高くなると悪くなる(~5%@8-20GeV)

•End-cap: MC、data共にp_Tが高くなると悪くなる(MC:~14%、data:~15% @8-20GeV) p_T <u>Mean</u>:

•Barrel、End-capでMC、dataの傾向は同じ •End-cap: Barrelに比べ大きくshiftする(~-18%@4-6GeV) 7

黒:Data

赤:MC sample

Thresholdについて(4GeV)

Barrel、End-cap3: 90%以上→Over efficientでtrigger

L1_MU0をpassした4GeV<offline p_T<5GeVのMuonを使用 →90%がtriggerされる値を使用

Region	Threshold	Efficiency @4GeV
Barrel	3GeV	95%
End-cap1	2.5→1.8GeV	73%→86%
End-cap2	2.5→2.0GeV	84%→94%
End-cap3	2.5GeV	98%

<u>Rateの変化</u>

同じdataでthresholdを変えて計算 変更前のthreshold: ~34Hz →変更後のthreshold: ~39Hz

~11%上がる

Dataを使ったL2 MuonSAの検証

Efficiency

Plateau: ~99% (Barrel、End-cap)
Efficiency@4GeV: Barrel ~95%、End-cap ~73%
<u>Thresholdの設定(End-cap)</u>

•End-capで新しいthresholdを設定 •Rateは~11%高くなる

<u>**p**</u>_T resolution

●p_Tが高くなるにつれ悪くなる

•Barrel: ~5%@8-20GeV、End-cap: ~15%@8-20GeV

<u>p_T mean</u>

●p_Tが高くなるにつれbiasが小さくなる
 ●End-cap: Barrelに比べ大きくshiftする

End-capについて

この領域はbarrelとend-capのtoroid magnetが重なる領域でそれ ぞれの磁場により複雑な磁場ができる →p_Tの再構成が難しい(residual of p_Tを悪くする原因)

Efficiency	vat 4GeV (L2_MU4)
А	65% (82%)
В	80% (93%)
С	98% (98%)

ThresholdによるEfficiencyの変化

ATLAS Muon Trigger System

ATLASのMuon Trigger →3段階のTriggerを用意

1.Level1 Trigger

- •Hardwareのtrigger
- •L1をpassするとL2にmuonの大まかな 情報(Rol)が送られる

2.Level2 Trigger

- •Softwareのtrigger
- •Rol情報をもとにmuonのp_Tを再構成
- •あるthresholdを超えるmuonを選別

3.Event Filter

- •Softwareのtrigger
- •L2より更に時間をかけてmuonを再構成し選別

L2とEF(Event Filter)

1.ミューオン検出器のみを使ったtrigger(MuonSA) 2.内部飛跡検出器(ID)とミューオン検出器を組み 合わせたTrigger(MuonCB)

> ・offlineで更に時間をかけて再構成 ・Trigger情報と一緒に保存される