LHC-ATLAS実験を用いた mono-jet事象の探索

<u>風間慎吾</u>,金谷奈央子^A,田中純一^A,寺師弘二^A 東裕也,浅井祥仁,小林富雄^A

東大理,東大素セ4

日本物理学会 第66回秋季大会 2010/10/14@九州工業大学

Outline

- ●Large Extra Dimension -Kaluza-Klein Graviton-(mono-jet事象の概略)
- ●解析
- ≻EventのCleaning
- ►MCのNormalization
- ▶Real Data(約2.9pb⁻¹)の解析とその結果
- ●まとめと展望

1.1 Large Extra dimension(Kaluza-Klein Graviton)

Large Extra dimension(Arkani-Hamed, Dimopoulos, Dvali)

 ●n個のフラットな余剰次元がコンパクト化されている(サイズR)
 ●全ての標準理論の粒子は(3+1)次元のBraneに束縛されており、 Gravitonのみが余剰次元を伝わることができる

 $M_{\text{Pl}^2} = V_n \; M_{\text{D}^{n+2}}$

M_{pl}(~10¹⁹GeV)が余剰n次元空間の大きな体積 V_n = (2πR)ⁿ
 によって薄められた結果、真のPlankスケールM_D ~TeVとなる

M_DがTeV領域に存在すれば階層性問題の解決!!

1.2 Kaluza-Klein Gravitonの生成過程@LHCと特徴

<u>LHCでのKaluza-Klein(KK) Graviton の生成はmono-jet シグナルとし</u> <u>て見える</u>

探索すべきは、一つのJetとMissingEtがBack to Backに観測される事象!

1.3 MCサンプルとRealData

■MCサンプル

• M_D=1TeV,1.5TeV,2TeV

●余剰次元の数n=4

●GeneratorとしてはExoGravitonを使用

●Geant4ベースのfull simulationではなく、 fast simulationを使用

(ただし、fast simulationの結果をsmearし、full simulationの 結果を再現す るように調整されたものを用いている)

	Xsec@1TeV	Xsec@1.5TeV	Xsec@2TeV
qg	110.4pb	13.0pb	2.5pb
gg	149.9pb	16.9pb	3.2pb
qqbar	22.0pb	4.0pb	1.0pb

BackgroundのMonte Carlo Sampleとしては、

Z $\rightarrow \nu \nu$ + jet (Alpgen) W \rightarrow lepton+jet(Alpgen) QCD Jet (PYTHIA) を使用し、Geant4ベースのfull simulationで解析を行った

■RealData ●ATLASで2010年3月31日から8月30日の間に取得された約2.9pb⁻¹を使用

2. 1 Real Data - Event Cleaning-

Non-collision起源のイベント(Noise,Cosmics,BeamHaloはバランスせず、MissingEt分布にテールを作る。特にCosmics起源のイベントは偽のmono-jet事象を作ってしまう

1. HEC(Hadron EndCap) noise

2. LAr coherent noise

3. cosmic rays

cosmic muonがハドロンカロリメータで 制動放射を起こしてhigh pT jetを作り、 あたかもmono-jet事象の様に振る舞う (100GeV以上のJetを作るレート~0.1Hz)

クラスターにassociateしているtrackがないこ と、さらには電磁カロリメータで測定されたエ ネルギーの割合が低いことに着目して落とせる

4. Beam Halo

BeamHaloとは陽子ビームがLHC 加速器 のビームパイプ内の残留ガスと弾性・非弾 性散乱することで生じる二次粒子のこと (左図ではBeamHaloのミューオンが水平 方向に検出器全体を通過している)

クラスターにassociateしているtrackが ないことに着目して落とせる

<u>6.Event Cleaning前後のMissingEt分布</u>

5. その他

<u>2.2 Real Data -BackgroundのNormalization-</u>

<u>分布の形はMCを信用し、イベント数をMCとDataで同じになるように規格化</u>

●QCD(MC)の規格化

>0lepton (pT>10GeV)
>1stJetpT>200GeV,|Eta|<2.8
>MissingEt<35GeV
℃Normalizeした

規格化係数

(MCのxsecとRealDataから求めたxescの比) RealData/MC = 0.69±0.01(stat.)

●<u>W(MC)の規格化</u>

>1lepton (pT>10GeV)
>MissingEt>35GeV
>50GeV<Mt<100GeV
℃Normalizeした

QCDの寄与は上記の規格化係数を用い て差し引いてある RealData/MC = 1.08±0.14(stat.)

Zの規格化係数はWのものを用いた

<u>1stJetのpT分布</u>

<u>leptonとMissingEtのMt分布</u>

2.3 Real Data -Mono-jetのSelection Criteria-

Selection Criteria for KKGraviton search

	Cut
1.	Number of lepton = 0 (pT >10GeV)
2.	1 st jet pT > 200GeV && Eta <2.8
3.	Number of jets <=2 (ただし、2番目のjetがいた場合は2 nd jet pT <50GeVを要求)
4.	$\Delta \Phi(MissingEt, 1^{st} jet) > 2.0$
5.	MissingEt > 200GeV

ΔΦ分布(Leading Jet pTのCut後)

<u>Leading Jet pT(No leptonのCut後)</u>

Selection Criteria for KKGraviton search

	Cut
1.	Number of lepton =0 (pT >10GeV)
2.	1 st jet pT > 200GeV && Eta <2.8
3.	Number of jets <=2 (ただし、2番目のjetがいた場合は2 nd jet pT <50GeVを要求)
4.	$\Delta \Phi$ (MissingEt , 1 st jet) > 2.0
5.	MissingEt > 200GeV

of Jets(Leading Jet pTのCut後)

<u>MissingEt分布(ΔΦのCut後)</u>

2.4 Real Data -mono-jetのCut flow-

	Data	All BG	Zvv +jets	W + jets	QCD	KK (1TeV)	KK (1.5TeV)
Nolepton (10GeV)	1364247 ±1168	1457931 ±4195	324 ±17	577 ±3	1457037 ±4196	820 ±1	98.5 ±0.1
Leading jet's pt>200GeV & eta <2.8	43825 ±209	36492 ±107	23.3 ±0.8	40.4 ±0.6	36428 ±107	158 ±1	20.8 ±0.1
Number of jet <=2 (2nd jet's pt<50GeV)	14 ±3.6	13.8 ±0.7	8.3 ±0.6	4.9 ±0.3	0.65 ±0.3	50.4 ±0.3	6.5 ±0.03
ΔΦ>2.0 (MissingEt, Leading jet)	14 ±3.2	13.8 ±0.7	8.3 ±0.6	4.9 ±0.3	0.65 ±0.3	50.4 ±0.3	6.5 ±0.0.3
MissingEt> 200GeV	3 ±1.7	3.2 ±0.3	2.2 ±0.3	1.0 ±0.1	0±0	27.5 ±0.2	3.7 ±0.02

<u>Real Data -mono-jetのCutで残ったイベント-</u>

<u>3.Large Extra Dimensionに対するLimit</u>

3.2発予測(SMのBG)で3発観測した場合の<u>95%C.L.でのupper limitは4.55で、</u> 予測されるKKGravitonの事象(signal)の期待値がこれより大きければexclude できる(90%C.L.でのupper limitは3.48) (ただし、systematic errorは考慮していない)

余剰次元の数n=4のときのLEDモデルに対して、各M_Dでのsignalの期待値は

真のプランクスケールM _D	各M _D でのsignalの期待値		
1TeV	27.5±0.2		
1.5TeV	3.7±0.02		
2TeV	0.8 ± 0.01		

<u>真のプランクスケールM_Dとして1TeVのLEDモデルを95% C.L.で否定</u> <u>することができる(</u>TevatronでのLimitは1.04TeV) ただし、1.5TeVは90%C.L.では否定できる

色々な余剰次元の数nに対してどこまでM_Dに対してLimitがつけれるかは現 在解析中だが、実験の初期段階においても新しいLimitをつけられる可能性 がある。

systematic errorに関しても現在解析中だが、

- Jet Energy Scale の不定性~10%
- ●積分Luminosityの不定性~11%
- などがある。

4. まとめと展望

<u>まとめ</u>

- ●mono-jet事象は、大きな余剰次元の発見が期待でき、階層性問題の解 決が期待できるイベントトポロジー
- ●約2.9pb⁻¹のLuminosityのReal Dataでmono-jet事象の探索を行った
- ●non-collision起源(Cosmicsなど)を除くCleaningを行った
- ●MCを規格化し、KKGravitonの探索に最適化したカットを掛けた
- ●DataとBackgroundはコンシステントであり、M_D =1TeV(余剰次元の 数n=4)のLEDモデルを95%C.L.で否定することが出来た (1.5TeVは90%C.L.では否定出来た)<u>ただし、no systematic error</u>

<u>今後の展望</u>

- ●systematic errorの見積もりとBackgroundの評価(統計が貯まれば data-drivenな手法で評価)は今後の課題
- ●現在のLuminosityで各余剰次元の数nに対してどこまでM_Dに対して limitがつけれるかは現在解析中であるが、実験の初期段階においても 新たなLimitをつけられる可能性がある