bクォーク由来のジェットを用いた ATLASレベル2ミューオントリガーの性能評価

日本物理学会 2010年秋季大会 九州工業大学戸畑キャンパス

東エ大,神戸大^A,東大理^B,ハンブルク大^C,高エ研^D

管野貴之

石川明正^A, 岡田勝吾^A, 奥山豊信^B, 久世正弘,

藏重久弥^A,小森雄斗^B,河野能知^C,道前武^B,

德宿克夫^D,長野邦浩^D,早川俊^A,松下崇^A,山崎祐司^A

2010/9/14

14aSM01 管野貴之 —日本物理学会 2010年秋季大会—

1

目次

- ATLAS検出器ミューオントリガー
- ・ Level 2ミューオン再構成アルゴリズムの性能評価方法
- ・ これまでの問題点
- ・ bクォーク由来のジェットを用いた評価
- 結果

ATLAS検出器ミューオントリガ-

- ATLASトリガーシステム
 - ハードウェアロジック回路からなるLevel 1 と、ソフトウェア処理によるLevel 2、Event Filterで構成

ミューオントリガー

- Level 1
 - TGC (Thin Gap Chamber) & RPC (Resistive Plate Chamber) の2つの高速応答検出器に よるミューオン識別、再構成
- Level 2
 - Level 1の位置情報をもとに、その付近で ミューオンを探す
 - より高精度の位置検出器MDT (Monitored Drift Tube) も用いる
 - 内部飛跡検出器のトラックとの結合、等
- **Event Filter**
 - Event Builderによってオフラインとほぼ同 程度の再構成が可能

2010/9/14

性能評価方法 今回は、Level 2の内ミューオンシステムのみを用いた

- <u>ミューオン再構成アルゴリズムの性能評価について報告する</u>
- 初期衝突データ~90nb⁻¹は、Level 1ミューオントリガーをパスした 事象をすべて保存
 - →オフライン解析にてLevel 2トリガーの性能評価が可能
 - 1. オフライン再構成によってミューオンを選び出す
 - 内部飛跡検出器とミューオンシステムの飛跡のマッチングを要求
 - 2. そのミューオンとLevel 1情報とのマッチングをとる
 - 3. これについて、Level 2のアルゴリズムが再構成に成功したかを調べる
- ・ シミュレーション
 - Minimum Biasモンテカルロサンプル
 - (* 一部にdi-Jetモンテカルロサンプルを使用)
- Level 2ミューオン再構成アルゴリズムの詳細な性能評価については
 "実データを用いたATLASレベル2ミューオントリガーのコミッショニング" (14pSM10, 登壇者:道前武)

を参照してください。

2010/9/14

14aSM01 管野貴之 —日本物理学会 2010年秋季大会—

問題点

2010/9/14

- ミューオンの内訳
 - ・ シグナルミューオン
 - 衝突点付近で生成
 - バックグラウンドミューオン
 - 内部飛跡検出器やカロリーメーター中
 で π / K が崩壊してできるミューオン
 - カロリーメーター中でのハドロンシャ
 ワー形成に伴い生成されるミューオン

アルゴリズムは<u>シグナルミューオンを仮定</u> しているため、シグナルとバックグラウンド ではトリガーは異なった振る舞いを見せる 0.8 L2 ミューオントリガー効率 0.6 (pT > 4GeVのミューオン取得用) 0.4⊢ シグナル バックグラウンド 0.2 **30** р_т (GeV 10 20 40

*ミューオンの内部飛跡検出器でのトラックと MC truth informationでマッチングを取り、 重い粒子の崩壊でできたミューオンをシグナルとした

14aSM01 管野貴之 —日本物理学会 2010年秋季大会—

dp_{T_x} match χ^2 を用いた対処法

- 主なバックグラウンドであるπ/Kの崩壊によって生成されたミューオンの場合、
 - 内部飛跡検出器→π/K
 - ミューオン検出器→ミューオン

の飛跡を測定しているケースが多い

 $\rightarrow \pi/K$ 崩壊の寄与をデータで調べるため、

- dp_T = (p_{T,ID} p_{T,SA}) / p_{T,ID} = 上記2つの検出器で測定されたp_Tの違い
- match χ^2 = 2つの検出器の測定結果を結合する際の χ^2

等の変数が用いられている。

dp_T match χ^2 カット

・ dp_{T、}match χ^2 のカットによって得られる π / K 崩壊の寄与の除去効果

・ 最大約3倍のs/n改善の効果

2010/9/14

14aSM01 管野貴之 – 日本物理学会 2010年秋季大会–

bクォーク由来のジェットを用いた評価

 dp_{T_x} match χ^2 を用いるのとは独立な方法として、 バックグラウンドの寄与を除去し、シグナルのミューオンに 対するトリガーの性能を調べるために、ミューオンを含む <u>bクォーク由来のジェットの選別を行った。</u>

• b-ジェットの内20%

→ミューオンを含む崩壊

- bハドロンの直接崩壊、およびcハドロン経由での崩壊 →シグナルミューオン

14aSM01 管野貴之 —日本物理学会 2010年秋季大会—

2010/9/14

14aSM01 管野貴之 — 日本物理学会 2010年秋季大会—

ジェットマッチング、p_{T,rel}カット
 により、p_T分布に変化が生じる
 → p_T依存性

カットの評価は、分布の形状の 変化の少ない $p_{T} > 6$ GeVで行った。

評価の領域

 $\begin{array}{c} 6000 \\ + \\ 4000 \\ + \\ 2000 \\ + \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ P_{T,rel}} (GeV) (p_T > 6 GeV) \end{array}$

黒点:データ 黒線:シミュレーション シグナル バックグラウンド

14aSM01 管野貴之 - 日本物理学会 2010年秋季大会-

p_{T,rel}カットによって得られるバックグラウンドの寄与の除去効果

- ジェットマッチングの要求:
 - ミューオン数 365155→109528 (97860→43475 @ p_T > 6 GeV)

p_{T.rel}カットのデータでの検証

・ p_{T rel}カットを段階的にかけていき、dp_T分布の変化を見た。

・ データは シミュレーションと 良く合っている

pi/K崩壊寄与に 特徴的な~0.2付近 の分布が、データと シミュレーションで 同様に減少の傾向を 示す

→ p_{T.rel}カットをデータに用いることが可能

2010/9/14

14aSM01 管野貴之 -- 日本物理学会 2010年秋季大会--

カットの導入

- p_{T,rel} > 1.5 GeV,
- $dp_T < 0.2$, match $\chi^2 < 10$
- の2種類のカット導入後のプロンプトミューオンの割合を調べた

pT,rel カット→high p_Tに有効、low p_Tでは逆効果か?

2010/9/14

14aSM01 管野貴之 –日本物理学会 2010年秋季大会–

- ・ ミューオンシステムのみを用いたLevel 2ミューオントリガー効率
 - p_T > 4GeVのミューオン取得用
 - 黒:カット導入前、データ
 - 緑:pi/K崩壊の寄与、シミュレーション
 - 青:プロンプトミューオン、シミュレーション
- ・ dp_T 、match c²のカット(右図、赤)では曲線がプロンプトのそれにかなり近づく
- pT,relのカット(左図、紫)では、7 GeV付近でわずかにプロンプトに近づくが、それ 以下のp_T領域では元の曲線とあまり変わらない。
 - シミュレーションで見られたように、low p_T ではp_{T.rel}カットに効果がないためか

2010/9/14

14aSM01 管野貴之 - 日本物理学会 2010年秋季大会-

まとめ / 展望

- ・ ATLASレベル2ミューオントリガーの性能評価を行った。
- シグナルのミューオンに対する性能を評価するために、s/nを向上する 選別を行った。
 - bクォーク由来のジェットに含まれるミューオンを用いた。
 - p_{T,rel}のカットにより、bハドロンなどの重い粒子の崩壊で
 生成されるミューオンを選別
- p_{T,rel}のカットについてシミュレーションとデータで検証を行った。
 - High p_Tのミューオンに対してs/nの改善に有効であるという結果を得た。
- ・ セレクション後のLevel 2ミューオントリガー効率を調べた。
 - 今回調べた p_T > 4GeVのミューオン取得用トリガーでは $p_{T,rel}$ カットの有効性 は示されなかった。
 - シミュレーションで示唆されたように、Low pTのミューオンに対してp_{T,rel}のカットが 有効ではないためと考えられる。
- 今回得られた、High p_Tでのp_{T.rel}カットの有効性を生かしていきたい。
 - より高いp_Tを取るためのトリガーのための解析など

2010/9/14

14aSM01 管野貴之 –日本物理学会 2010年秋季大会–

2010/9/14

14aSM01 管野貴之 - 日本物理学会 2010年秋季大会-

p_{T,rel}カットの検証: pT < 6 GeV

2010/9/14

14aSM01 管野貴之 - 日本物理学会 2010年秋季大会-

17

(本頁) ptrelカットはeta分布に 変化を与える

(前頁)
dptカットによるturn-onの
立ち上がりの変化は
barrel, endcap共に
見られる
barrel, endcapで分けて
見ても、ptrelカットが
turn-onをシャープにする
効果は見られない

2010/9/14

14aSM01 管野貴之 – 日本物理学会 2010年秋季大会–

