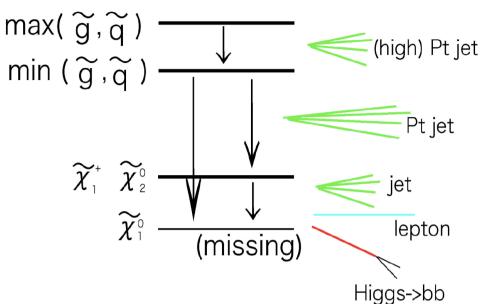
ATLAS検出器を用いた 1Leptonモードにおける 超対称性粒子探索


東大理, 東大素セA

佐々木雄一, 片岡洋介A, 金谷奈央子A, 山本真平A, 浅井祥仁, 小林富雄A 日本物理学会 第66回秋季大会 2010/10/14 九州工業大学

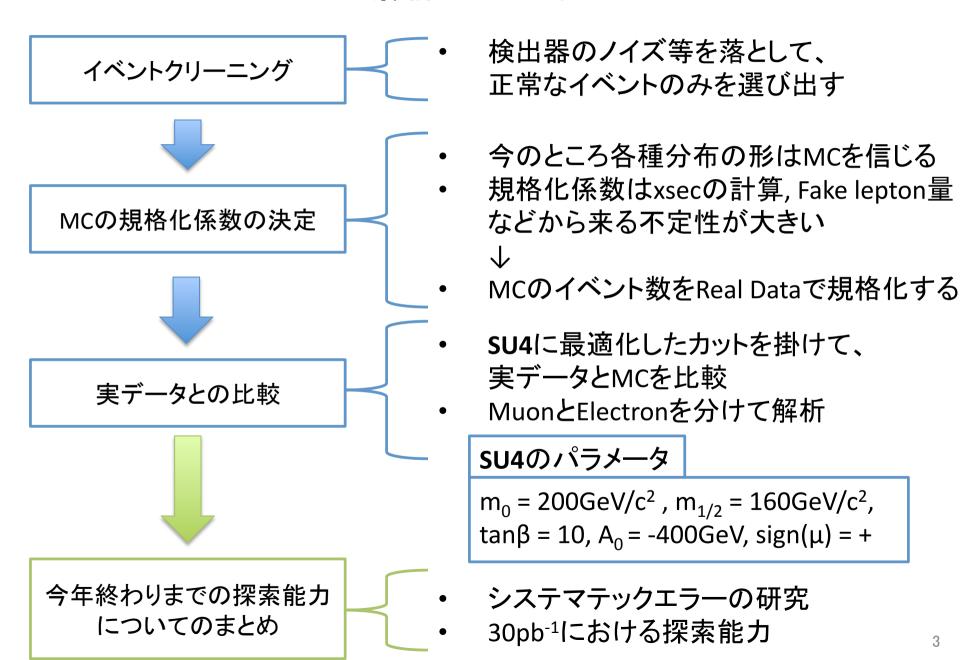
SUSY 1-Lepton Modeの概略

LHCでのSUSYのイベントトポロジー

- 1. グルイーノ/スクオークが生成。
- 2. Multi-Jetを出しながら、χとなる。
- 3. χ → Lepton + LSP に崩壊。

(High Pt) Multi Jet + Missing Et がSUSY発見の為の基本的なイベントトポロジー。 +さらにLeptonを要求し、QCD Backgroundを効果的に落とすことが出来る。

→実験初期から発見能力が高いイベントトポロジー


。 <主なBG>

¦W + Jets : WがLeptonic崩壊するとMissEtとLepton

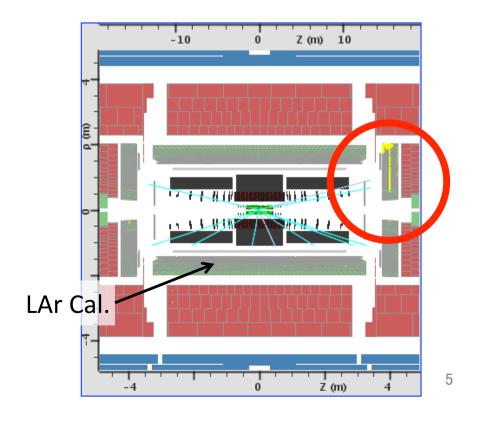
! tt: 少なくとも一方がLeptonic崩壊するとMissEtとLepton

このトークでは、9月初頭までのデータ(2.9pb-1)を用いた、 1-Lepton ModeにおけるSUSY探索の結果について報告する。

解析のアウトライン

イベントクリーニング

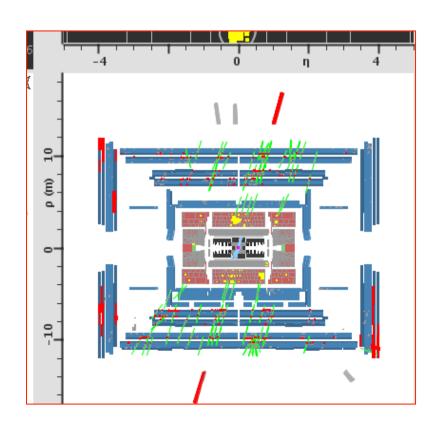
検出器のノイズ


HEC (Hadron Endcap Calorimeter) noise

- •前方のハドロンカロリメータのCellが鳴る 現象(~1mHz)。MissingEtに大きなテール を作る。
- •Single Cellが鳴る → 一本のJetに 含まれるCellの数を見て落とせる。

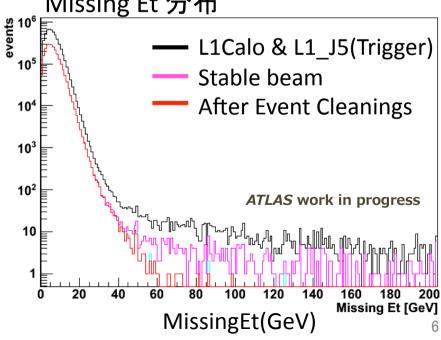
-10 0 Z (m) 10 Hadron Cal.

LAr coherent noise


- •まれに、LArにコヒーレントにノイズが乗り、 大きなMissingEtを作る。
- •LArは出力波形をモニタしているので、 その波形を、「正しい波形」と比較して 落とすことが出来る。

宇宙線、その他

Cosmic noise

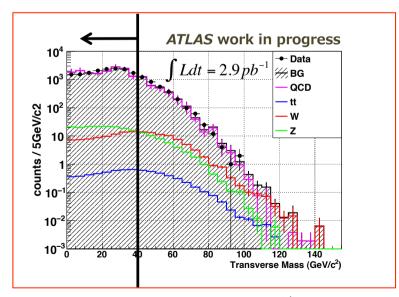

- •宇宙線が制動放射を起こし、カロリメータに エネルギーを落として100GeV程度のJetを 作る(50mHz)。
- •Collisionから50ns以内のイベントを 選ぶことで落とせる。

その他

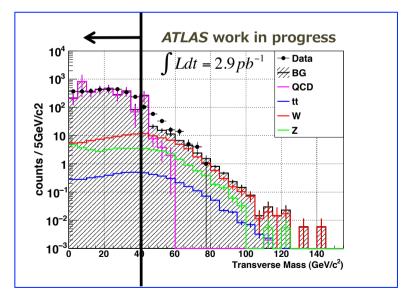
- •衝突点が正しく再構成されていることを 要求する(Primary Vertex Cut)
- →非衝突起源のイベントを落とせる。
- •BeamがStableな状態のイベントのみを 抜き出して使う(LumiBlock Selection)

イベントクリーニング前後の Missing Et 分布

実データに合わせたMCの規格化


QCDの規格化

QCD事象を選び出した上で、 MCと実データを比較する。 →QCDの規格化係数の決定


Fake Leptonの数はMCの不定性が大きい
↓
1-Leptonを要求した上で、
Real Dataに合わせる

QCD事象選択

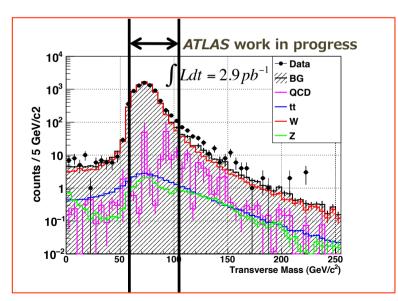
- •1-Lepton ($P_T^{1st Lepton} > 20 \text{ GeV/c}$)
- $\bullet P_T^{1st Jet} > 40 \text{ GeV/c}$
- •MissingE_T < 20GeV
- • M_T (Missing E_T ,Lepton) < 40GeV/ c^2

Transverse Mass (MissEt Cut後) <Electron Mode>

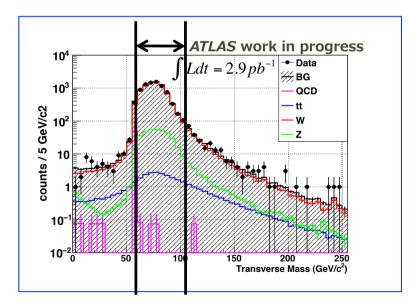
Transverse Mass (MissEt Cut後) <Muon Mode>

Wの規格化

同様に、W事象を選び出した上で、


MCと実データを比較。

→Wの規格化係数の決定


この際、QCDの規格化係数は前頁の値を使用

W事象選択

- •1-Lepton ($P_T^{1st Lepton} > 25 \text{ GeV/c}$)
- •Lepton O EtCone 20 < 6 GeV
- •Missing $E_T > 30$ GeV
- •60GeV/c² < M_T (MissingE_T, Lepton)<100GeV/c²

Transverse Mass (MissEt Cut後) <Electron Mode>

Transverse Mass (MissEt Cut後) <Muon Mode>

規格化のまとめ

< QCD >

- •Fake Leptonの量はMCの不定性が大きい。Real Dataによる評価が必要。
- →1-Leptonを要求した後に規格化し、Real DataのFake Lepton量に合わせた。

< W >

- •Electron、MuonのReconstruction Efficiency、Trigger EfficiencyがMCと Real Dataとで10%程度の不定性
- → Real Dataに基づいた規格化で合わせた。

< Z >

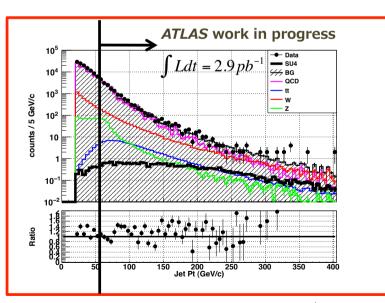
•Wの規格化係数を使用した。

< tt >

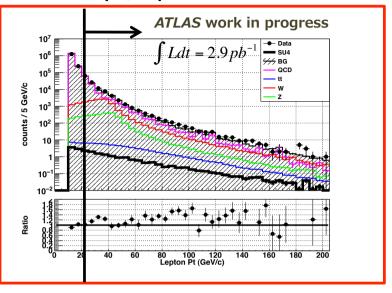
•Next-Leading Orderまで計算した xsecと現在のLuminosityを信じて 規格化係数を決定。

規格化係数 (Real Data / MC)

Mode	QCD	W (Z)
Electron	0.39 ± 0.03	1.03 ± 0.02
Muon	0.41 ± 0.08	0.96 ± 0.01


※MCのxsecと、
Real Dataから求めたxsecの比。
エラーは統計のみ。

1-LEPTON MODEの解析

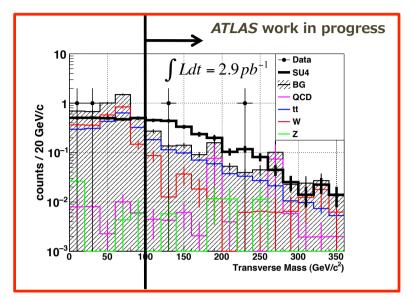

Electron Mode の解析 (1/2)

SUSY (1-Lepton mode) 事象選択

- •1-Lepton ($P_T^{1st Lepton} > 20 \text{ GeV/c}$)
- •At least 3-Jets $(P_T^{1st, 2nd, 3rd Jet} = 60, 40, 40 \text{ GeV/c})$
- •Missing $E_T > 80$ GeV
- • M_T (MissingE_T, Lepton) > 100GeV/ c^2

Leading Jet Pt (1-Lepton Cut後)

Electron Pt



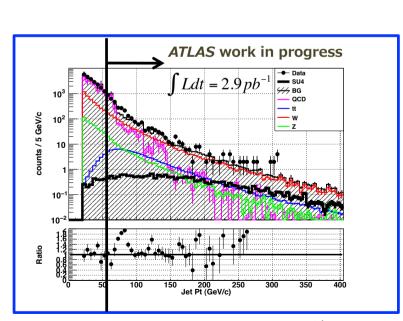
2nd Leading Jet Pt (1st Jet Pt Cut後)

Electron Mode の解析 (2/2)

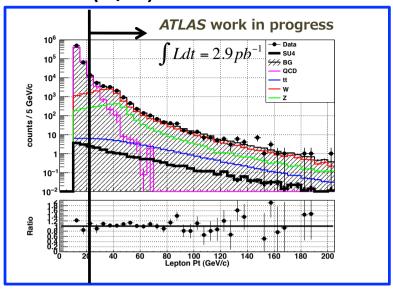
SUSY (1-Lepton mode) 事象選択

- •1-Lepton ($P_T^{1st Lepton} > 20 \text{ GeV/c}$)
- •At least 3-Jets $(P_T^{1st, 2nd, 3rd Jet} = 60, 40, 40 \text{ GeV/c})$
- •Missing $E_T > 80$ GeV
- • M_T (MissingE_T, Lepton) > 100GeV/ c^2

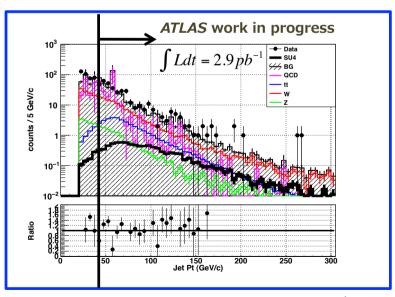
Transverse Mass (MissEt Cut 後)


Electron mode \mathcal{O} Cut Flow

Cut	Real Data	All BG	SU4	QCD	W	Z	tt
1-Lep.	1.2e5±3e3	1.1e5±9e3	13.1 ± 0.2	9.5e4±8e3	1.2e4±10	849 ± 2	56.9 ± 0.1
1 st Jet	6600 ± 80	6400 ± 400	11.5 ± 0.2	5800 ± 400	482±2	106 ± 1	47.5 ± 0.1
2 nd Jet	1620 ± 40	1400 ± 100	10.5 ± 0.2	1200 ± 100	139 ± 1	21.0 ± 0.4	41.2 ± 0.1
3 rd Jet	310 ± 20	190 ± 10	7.8 ± 0.2	140 ± 10	25.1 ± 0.4	4.3 ± 0.2	25.13 ± 0.09
MissEt	4 ± 2	5.5 ± 0.2	4.6 ± 0.1	0.2 ± 0.1	2.5 ± 0.1	0.08 ± 0.02	2.67 ± 0.03
Mt	2 ± 1.4	1.2 ± 0.1	2.12 ± 0.08	0.2 ± 0.1	0.25 ± 0.04	0.05 ± 0.02	0.68 ± 0.01

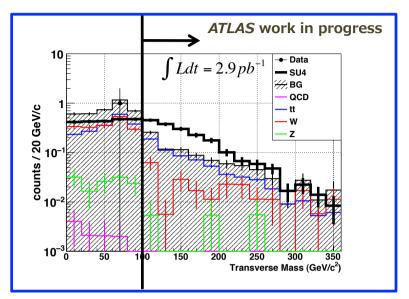

Muon Mode の解析 (1/2)

SUSY (1-Lepton mode) 事象選択


- •1-Lepton ($P_T^{1st Lepton} > 20 \text{ GeV/c}$)
- •At least 3-Jets $(P_T^{1st, 2nd, 3rd Jet} = 60, 40, 40 \text{ GeV/c})$
- •Missing $E_T > 80$ GeV
- • M_T (MissingE_T, Lepton) > 100GeV/ c^2

Leading Jet Pt (1-Lepton Cut後)

Muon Pt



2nd Leading Jet Pt (1st Jet Pt Cut後)

Muon Mode の解析 (2/2)

SUSY (1-Lepton mode) 事象選択

- •1-Lepton ($P_T^{1st Lepton} > 20 \text{ GeV/c}$)
- •At least 3-Jets $(P_T^{1st, 2nd, 3rd Jet} = 60, 40, 40 \text{ GeV/c})$
- •Missing $E_T > 80$ GeV
- • M_T (MissingE_T, Lepton) > 100GeV/ c^2

Transverse Mass (MissEt Cut 後)

Muon mode の Cut Flow

Cut	Real Data	All BG	SU4	QCD	W	Z	tt
1-Lep.	2.8e4±2e2	2.7e4±2e3	12.1 ± 0.2	1.5e4±2e3	1.1e4±10	802 ± 2	51.9 ± 0.1
1 st Jet	1340 ± 40	1300 ± 200	10.4 ± 0.2	800 ± 200	438 ± 2	42.5 ± 0.5	43.1 ± 0.1
2 nd Jet	380 ± 20	450 ± 90	9.6 ± 0.2	270 ± 90	127 ± 1	12.9 ± 0.3	37.5 ± 0.1
3 rd Jet	79 ± 9	65 ± 5	7.1 ± 0.1	17 ± 5	23.3 ± 0.4	2.7 ± 0.1	22.76 ± 0.08
MissEt	1±1	4.8 ± 0.1	4.1 ± 0.1	0.01 ± 0.00	2.1 ± 0.1	0.15 ± 0.03	2.50 ± 0.03
Mt	0 ± 0	0.97 ± 0.04	1.90 ± 0.07	0.00 ± 0.00	0.28 ± 0.04	0.03 ± 0.01	0.67 ± 0.01

1-Lepton解析のまとめ

- •Electron Modeと Muon Modeは独立なので、結果を足し合わせる。
- •BGの期待値 2.2発。一方、SU4は(存在すれば)4.0発残っているはずだった。
- •実データで残ったイベントは2発 \rightarrow 90%でのC.L.でSU4をexclude出来た。 (システマティックエラーなし)

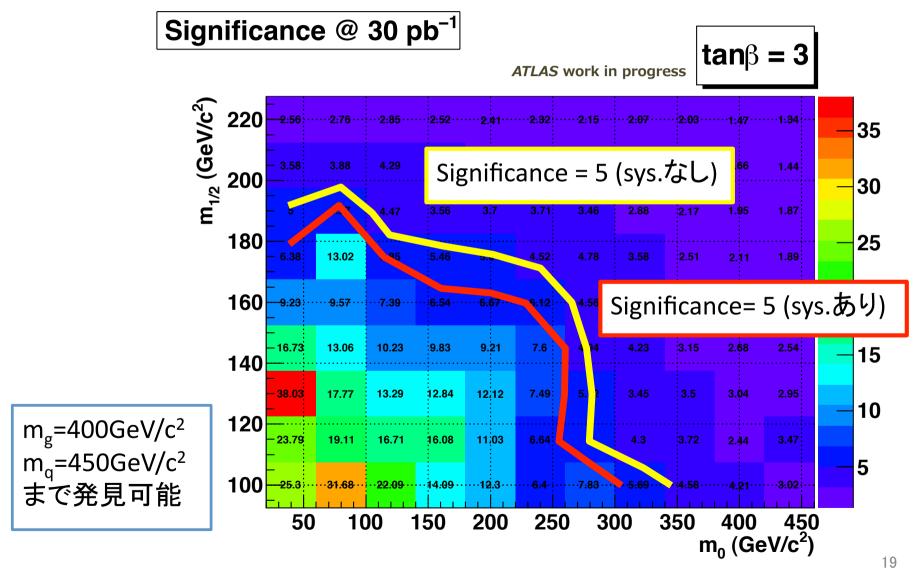
	Electron	Muon	Sum
Real Data	2 ± 1.4	0 ± 0	2 ± 1.4
BG	1.2 ± 0.1	0.9 ± 0.0	2.2 ± 0.1
SU4	2.1 ± 0.1	1.9 ± 0.1	4.0 ± 0.1

<残ったイベントの例>

- W → e + nu にJetが付随して出たイベント?
- 残ったもう一つは、おそらくハードなQCDイベント。

今年中のデータでの発見能力

システマティックエラーについて


- 1-Lepton解析で主要なシステマティックエラーとして考えられるのは、
- 1. Jetの補正に使う係数(Jet Energy Scale)の不定性
- 2. 積分Luminosityの不定性(11%)
- 3. Electron/MuonのReconstruction、Trigger効率のMCとReal Dataの差(10%)

Systematic ErrorによるBGの不定性	Electron Mode	Muon Mode
Jet Energy Scale	17%	15%
積分Luminosity	11%	11%
Reco. / Trig. Eff.	10%	10%
合計(二乗和)	23%	21%

システマティックエラーは、BGの不定性 ΔB として計上し、 $\frac{S}{\sqrt{B+\left(\Delta B\right)^2}}$ の形で発見能力を悪化させるとして考える。

Significance @ 30pb⁻¹ (Electron + Muon Mode)

今年中に貯められる予定のデータ30pb-1によって発見可能な範囲を図示した。 Electron Mode と Muon Modeの結果を合わせている。

まとめ

- 1. 2.9pb⁻¹のReal Dataを用いたSUSY探索を、1-Lepton modeで行った。
- 2. MCは分布の形を信じた。QCD, Wをenhanceさせたコントロールリージョンで規格化を合わせた。
- 3. 探索はSU4に最適化したカットを掛けることで行った。
- 4. Electron Modeで2発、Muon Modeは0発で、合計2発イベントが残ったが、これはBGの見積もり(2.2±0.1イベント)とconsistentであり、SU4(期待値4.0±0.1イベント)は90%C.L.でexcludeされた。
- 5. 今年中(30pb-1)に探索可能なパラメータ領域も見積もった。 このデータ量で、 m_g =400GeV/ c^2 , m_q =450GeV/ c^2 の範囲まで探索が可能。