ATLAS初期に於けるr粒子同定の研究

日本物理学会秋季大会 九州工業大学 2010年9月14日

<u>塙慶太</u>、金信弘、受川史彦、原和彦、 望月和也、津野総司^A、中村浩二^B 筑波大数理、高工研^A、東大セ^B

LHC•ATLAS実験

Large Hadron Collider(LHC)

- 陽子陽子衝突型加速器
- 積分ルミノシティー:~3.5pb⁻¹

	設計値	現在
重心系エネルギー[TeV]	14	7
ルミノシティー [cm ⁻² s ⁻¹]	1.0×10^{34}	1.0×10^{31}

<u>ATLAS検出器</u>

- LHCに設置されている汎用型検出器 - <u>Higgs粒子</u>、超対称性粒子、余剰次元 の探索などが行われている。

2010年9月14日

塙 慶太

研究の動機

Tau の同定

<u>Tauの崩壊モードと特徴</u>

leptonic崩壊モードでのleptonはprompt leptonと見分け難い。 -> 本研究では、hadronic tauの同定(以下tauID)のみ考える。 (ATLAS実験でもhadronic tauが主対象モード)

	主な崩壊モード	Br
Leptonic	$T \xrightarrow{-} V V$	35.2%
<u>Hadronic</u>		64.8%
1-prong	$T \rightarrow \pi^- v_{\tau} + N\pi^0 (N=0,1,2)$	- 46.7%
3-prong	$\tau \rightarrow \pi^- \pi^+ \pi^- v_{\tau} + N\pi^0 (N=0,1)$	- 11.7%

<u>Hadronic tauの特徴</u>

✓1本または3本の荷電トラック
 ✓π±, π0がブースト (tau質量に対し、πが極めて軽いため)
 →細い領域に1または3荷電粒子が存在するJet

しかし、QCDからのbackgroundが多く、その評価が困難。 ->実験データから実際にtaulDを評価することは、tauを含む物理解 析において非常に重要。

研究方法

~W->tau nu事象を用いたTau ID Scale Factor の測定~

1.W->taunu eventを効率よく捕まえる。

- nu=消失エネルギー(MET)の要求:エネルギーのベクトル和から評価
- tau jetの要求 : tau jetの細さの特徴を用いる

2.上記のイベントセレクションで残った事象のtau候補について、飛跡(track)数分布を backgroundを含めた分布でフィットし、Wからのtauの割合f(=fraction)を求める。

QCD shapeのモデリングの研究

QCD過程はEWK過程と比較して、MCで実験事実を詳細に記述するのは困難であり、不定性も大きい。

-> データからtau Signal regionのトラック分布の形を抽出する。

2010年9月14日

塙

慶太

6

DataとQCD MCの比較

Control region:C

- Data

EWK MC

ATLAS work

in progress

10³

10²

10

・EWK MCはMCのcross sectionで規格化。
 ・QCD MCはdataの事象数で規格化。

 ✓全control regionにおいてQCDが支配的。
 ✓MCとdataで良い一致を示す。
 ✓MCとdataのずれはQCDモデリングの系 統誤差として評価する。

MCを用いたQCDトラック数分布の研究

慶太

塙

8

tau fractionの評価

慶太

9

W->enuを用いたMET Trigger 効率の評価

Motivation

✓ tau候補はMET triggerを用いている。MET trigger 効率のSF(MCとdataのtrigger efficiencyの比)を求めることで、trigger効率を含まないtauID SFを評価できる。
<u>方法:</u> Lepton triggerでW->enu eventを捕まえ、その事象で、MET trigger efficiencyを評価。

TauID scale factorの結果

parameter	
N _{obs}	315.
fraction	0.735
σ(w->enu)	9.30 nb
Luminosity	2598 nb ⁻¹
A:Acceptance	0.0110

σ(

source	Error[%]
Fraction fit QCD modeling	8.05 6.78
<u>Acceptance</u> tauJES MC stat Trigger scale factor(stat only)	5.29 0.751 0.054
<u>σ(w->enu)</u> Stat Sys	9.7 6.5

 $=0.87\pm0.07(stat)\pm0.12(sys)$

Result:

Tau ID Scale Factor=

fraction
$$* N_{obs}$$

$$w \rightarrow enu$$
)*integrated lumi*A

Conclusion and plan

Conclusion

- ・データからTau IDの同定効率を見積もる方法を考案した。
- •本研究より得たTau ID scale factorは0.87±0.07(stat)±0.12(sys)

<u>Plan</u>

- •Trigger scale factorの系統誤差
- •EWK background の系統誤差
- •b-jet fractionの系統誤差

Back up

OCD modeling 1Dependence of nTrack distribution on MET and MET Significance

2010年9月14日

塙

慶太

14

QCD modeling 2 Dependence on dPhi(Tau,MET)

日本物理字

After MET requirement (MET >20) because nTrack depends on MET.

•Select the following region as control region . MET>20+METSig<5+dPhi(Tau,MET)>2.0

•Tau pt distribution is not much dependent in these regions.

 fitted to the data nTrack distribution with taking this control region for the QCD shape.

塙

慶太

15

W->enu candidate

<u>Goal</u>

Get pure W event which is unbiased to MET.

Cut flow

1.Object Selection
Electron : Pt>20GeV,|eta|<1.37 or 1.5<|eta|<2.5,electron medium , author = 1 or 3</p>
Jet : AntiKtTopoJet , pt>20,|eta|<4.4</p>

2. Overlap removal
3.Event selection
(1) GRL(HSG4)
(2)Trigger (EF_g10_loose)
(3)at least one vertex with nTracks>=3
(4)bad jet
(5)electron tight ==1&& pt>25
(6)JetVeto
(7)cos(|dPhi(lep,met)|)<-0.9</p>

Signal vs QCD in several kinematics

- Apply Trigger , PV, JetCleaning, Tau, LeptonVeto, CrackJetVeto

日本

Physics bacckgroud

Impact on EF tau12 loose xe20

-EF tau12 loose is prescaled from period D, I use 'EF_tau12_loose_xe20'. -Up to E2 ,about 550 nb⁻¹ with EF_tau12 loose xe20 (about 300 nb⁻¹:EF_tau12_loose)

19

慶太

2D plots in several plan

2010年9月14日

日本物理学会

塙 慶太 20

SB ratio vs MET and MET Significance

Apply the criteria as follows , after Crack Jet Veto+<u>MET_RefFinal>20+MET_Significance>7</u>

Trigger bias

2010年9月14日

日本物理学会

慶太 22

塙

Cut Flow

1.Object Selection

Tau: pt>20GeV,|eta|<2.5,TauSafeCutMedium,electron veto ,muon veto Jet:AntiKt*EMScale>20GeV, |eta|<4.4

2. Overlap removal

Jet removal if match to tau object in dR(jet,tau)<0.2

3.Event Selection

- 1.GRL(HSG4)
- 2.Trigger(EF_xe25_noMu)
- 3.At least one vertex with nTracks >3
- 4. Event Veto with Bad or Ugly Jet(not "isGood")
- 5. Tau Pt>20GeV
- 6. LeptonVeto:

```
no electron(egammaPID:ElectronLoose and author!=8) with pt>5GeV no muon (STACO and isCombined) with pt>5GeV
```

7.Jet Veto in crack region

- 8.JetObject<2 + dPhi(Jet,Met)>1.0
- 9.dPhi(Tau,Met)>2.5
- 10.MET_RefFinal>25GeV
- 11.MET Significance >6(MET/0.5*sqrt(sumEt))

Acceptance

	evts(err[%])	Acceptance	+TauJES	-TauJES
Initial	998869(0.10)	100.	-	-
GRL	998869(0.10)	100.	-	-
Trigger	121507(0.28)	12.1	-	-
PrimaryVert	121138(0.28)	12.1	-	-
JetCleaning	120191(0.28)	12.0	-	-
LeadingTau	66678.(0.38)	6.67	5.44	7.00
LeptonVeto	60338.(0.40)	6.04	4.99	6.60
JetVeto	50740.(0.44)	5.07	4.74	6.36
dPhi(Jet,Met)	47516.(0.45)	4.75	4.30	6.12
dPhi(Tau,Met)	43735.(0.47)	4.37	3.26	5.35
MissingEt	43572.(0.47)	4.36	3.27	5.37
METSignific	31060.(0.56)	3.10	3.40	5.29

TauJES: 5.3% MC stat : 0.6%

Pt distribution

TauPt_dPhiTauMetvsSig

