ATLAS実験におけるZ \rightarrow µµ(W \rightarrow µv)事象の測定

久保田隆至, 織田勧, 結束晃平, 山下了, 松下崇^A(東大素セ, 神戸大理^A) 他 ATLAS日本標準モデルグループ, ATLAS Collaboration 日本物理学会2010年秋季大会@九州工業大学 2010年9月13日

ATLAS実験:約300 nb⁻¹の統計でのZ→μμ、W→μν断面積測定の 論文を準備中

- ミューオン検出器の性能測定
 - トラッキング効率の測定
 - トリガー効率の測定
 → 論文の解析に貢献
- Z→µµ事象の断面積
- W→µv事象の断面積
 → W/Z 解析グループ公式の手法にもとづいた解析結果
- 8月末までのデータ(~2.7 pb⁻¹)での解析(preliminary)
 - Z→µµ、W→µv候補事象の分布のMCとの比較

断面積測定の概要

•
$$(W/Z) \times Br(W/Z) = \frac{Nyeild - Nbg}{A \cdot C \cdot SFreco \cdot SFtrig \cdot Lint}$$

- N_{yeild}-シグナル事象数
- N_{bg}-背景事象数
- A geometrical / kinematical acceptance (MC)
- C-事象再構成効率 (MC)
- SF_{reco} データとMCのミューオントラッキング効率の比(ε_{data} / ε_{MC})
- SF_{trig} データとMCのミューオントリガー効率の比 (ε_{data} / ε_{мc})
- L_{int} 積分ルミノシティ

ミューオントラッキング

Muon Spectrometer (MS) hit method

ハドロンはカロリーメータで吸収され、ミューオン検出器に届かない

→ IDトラックの外挿先に、バイアスとならない範囲でミューオン検出器のヒット を要求しバックグラウンドを除く

2010年9月13日

- 1. 再構成されたミューオンをトリガー検出器へ外挿
- 外挿先でL1_MU6(p_T閾値6GeVのレベル1ミューオントリガー)が 鳴っているか判定

- W/Z解析の予事象選択と同じクオリティ(後述)のミューオン選抜
- イベントにジェットトリガーを要求、バイアスを排除

ミューオントリガー効率

- Endcap Barrelの2ビン
- 20GeV以上の効率をW/Zの解析に使用

ミューオントリガー効率

2010年9月13日

トリガー効率 (p_T > 15GeV)

ここまでのまとめ

<u>ここまで</u>

- 300 nb⁻¹でのミューオン検出器の性能評価
 - トラッキング効率: 99.4 +/- 2.5 % (Data), 98.6 % (MC)
 - トリガー効率: Endcap 86.3 +/- 2.2% (Data), <u>95.1 +/- 0.2 % (MC)</u>
 - : Barrel 76.0 +/- 2.0% (Barrel), 79.2 +/- 0.3 % (MC)
 - → 性能の理解も進んでいる

<u>ここから</u>

- W / Z 信号事象の分布、MCとの比較
 - 8月末までに取得された(~2.7 pb⁻¹)の統計での結果 (very preliminary)
 - データ取得期間中のトラッキング、トリガー効率は未評価 (評価用データセットのプロダクションが未完了)
 - 分布はイベント数で規格化
- 断面積の計算結果
 - 300 nb⁻¹での結果

ミューオン対不変質量分布

2.7 pb⁻¹, 全ミューオン対不変質量分布
 n^{CD} > 6C oV n^D > 40 CoV n^{MS} > 25 C

• $p_T^{co} > 6 \text{GeV}, p_T^{ID} > 4.0 \text{ GeV}, p_T^{MS} > 2.5 \text{ GeV}$

Z→μμ事象選別

• 衝突事象選別

陽子陽子衝突事象の選別

- Good Run Quality
- colliding beam crossing bunch
- L1_MU6 trigger
- primary vertex (# tracks \ge 3)
- |Z_{PV}| < 150mm

• 予事象選別

- combined muon
- |η| < 2.4
- $|Z_0 Z_{PV}| < 10$ mm
- $|p_T^{ms} p_T^{ID}| < 15 \text{ GeV}$
- p_T^{ms} > 10 GeV
- p_T^{comb}> 15 GeV

Isolateした異電荷ミューオン対の選別

- Z -> μμ 事象選別
 - p_T^{comb} > 20 GeV, $|\eta|$ < 2.4 for both muons
 - Muon Quality

(High p_T selection for both muons)

- $\Sigma p_T^{ID} / p_T^{comb} < 0.2$ (cone DR = 0.4)
- opposite charge
- 66 < Mμμ < 116 GeV

横運動量が高く、クオリティの良い(decay in flight でない) ミューオンを含む事象の選別

Z不変質量、p_T、ラピディティ

規格化:イベント数

ミューオン分布(Z→µµ)

規格化:イベント数

• = 0.87 +/- 0.08 (stat.) +/- 0.06 (syst.) +/- 0.10 (lumi.) nb.

• = 0.989 + 0.045 - 0.039 nb. (NNLO: FEWZ + MSTW2008)

W→µv事象選別

横運動量が高く、クオリティの良い(decay in flight でない) ミューオンを含む事象の選別

E_{τ}^{miss} , MT, 電荷分布(W $\rightarrow \mu v$)

22

E^{miss}以外のカット

2010年9月13日

ミューオン分布(W→µv)

規格化:イベント数

W→µv断面積計算 (300 nb⁻¹)

Nyeild – Nbg

•
$$(W \rightarrow \mu \nu) = \frac{Fryend - Frye}{A \cdot C \cdot SFreco \cdot SFtrig \cdot Lint}$$

Sample	W	W+	W-
Ζ->μμ	40.7 +/- 2.6	21.2 +/- 1.4	19.4 +/- 1.3
W->τν	31.8 +/- 2.0	18.6 +/- 1.2	13.2 +/- 0.9
Ζ->ττ	1.4 +/- 0.1	0.7 +/- 0.0	0.7 +/- 0.0
tt	4.3 +/- 0.3	2.2 +/- 0.2	2.1 +/- 0.2
QCD	21.1 +/- 9.8	11.1 +/- 5.4	10.1 +/- 4.8
total BG	99.3 +/- 11.0	53.8 +/- 5.7	45.5 +/- 4.8
signal yield	1181	709	472

A: 0.480 +/- 0.014 (W), 0.484 +/- 0.015 (W+), 0.474 +/- 0.014 (W-)
C: 0.758 +/- 0.031 (W), 0.765 +/- 0.031 (W+), 0.748 +/- 0.030 (W-)

(SF_{reco}, SF_{trig} corrected)

• L_{int}: 310 +/- 34.1 nb ⁻¹

ATLAS work in progress

- σ (W) = 9.59 +/- 0.30 (stat.) +/- 0.50 (syst.) +/- 1.06 (lumi.) nb.
- σ (W+)= 5.71 +/- 0.23 (stat.) +/- 0.29 (syst.) +/- 0.63 (lumi.) nb.
- σ (W-) = 3.88 +/- 0.20 (stat.) +/- 0.20 (syst.) +/- 0.43 (lumi.) nb.

<u>NNLO (FEWZ + MSTW2008)</u> σ (W) = 10.46 +/- 0.42 nb σ (W+) = 6.16 +/- 0.18 nb σ (W-) = 4.30 +/- 0.13 nb (NNLO)

Z tag & probe

まとめ

- 300 nb⁻¹の統計を用いたミューオン測定器の性能評価
 - トラッキング効率: 99.4 +/- 2.5 % (Data), 98.6 % (MC)
 - トリガー効率: Endcap 86.3 +/- 2.2% (Data), 95.1 +/- 0.2 % (MC)
 : Barrel 76.0 +/- 2.0% (Barrel), 79.2 +/- 0.3 % (MC)
 - → 解析手法、結果はATLAS実験のW/Z断面積測定の論文に採用
- 300 nb⁻¹のデータを用いた断面積の測定
 - $\sigma (Z \rightarrow \mu\mu) = 0.87 + -0.08 \text{ (stat.)} + -0.06 \text{ (syst.)} + -0.10 \text{ (lumi.)} \text{ nb.}$
 - $\sigma (W \rightarrow \mu \nu) = 9.59 + /-0.30 \text{ (stat.)} + /-0.50 \text{ (syst.)} + /-1.06 \text{ (lumi.)} \text{ nb.}$
 - $\sigma (W^+ \rightarrow \mu^+ \nu) = 5.71 + /-0.23 \text{ (stat.)} + /-0.29 \text{ (syst.)} + /-0.63 \text{ (lumi.)} \text{ nb.}$
 - σ(W⁻ → μ⁻v) = 3.88 +/- 0.20 (stat.) +/- 0.20 (syst.) +/- 0.43 (lumi.) nb.
 誤差の範囲でNNLOの理論予想と一致
- 2.7 pb⁻¹の統計で855個のZ、9365個のW候補事象の分布をMCと比較
 - イベント数による規格化で良く一致
 - Zピークを用いたtag & probeによる性能評価を開始した

ATLAS実験

ミューオン検出器(|η|<2.7):空芯トロイド磁場 +トリガー、トラッキングチェンバー 運動量1TeVまでのミューオンを< 10%の分解能でトリガー、再構成

ルミノシティ

5

ATLAS Online Luminosity $\sqrt{s} = 7 \text{ TeV}$

27, Aug.

LHC Delivered

ATLAS Recorded

Total Delivered: 3.69 pb⁻¹

Total Recorded: 3.46 pb⁻¹

ルミノシティ不定性~11%

So far.

3.5 pb ⁻¹

Zのp_T, ラピディティ

parameter	δCw (%)
Trigger efficiency	0.7
Reconstruction efficiency	5.0
Muon momentum scale	0.45
Muon momentum resolution	0.48
Isolation efficiency	2.0
Total	5.5

Parameter	δAw (%)
Theoretical uncertainty	3.0

系統誤差(W→µv)

parameter	δCw (%)
Trigger efficiency	1.9
Reconstruction efficiency	2.5
Muon momentum scale	1.2
Muon momentum resolution	0.2
Muon Spectrometer miss alignment	1
Etmiss scale and resolution	2
Isolation efficiency	1.0
Total	4.0

Parameter	δΑw (%)
Theoretical uncertainty	3.0

Process	Dataset	Generator	Cross-section (pb)
$W \rightarrow \mu \nu$	106044	Ρυτηία	10 454
$Z \rightarrow \mu \mu$	106047	Ρυτηία	989
W ightarrow au v	106022	Ρυτηία	10 454
Z ightarrow au au	106052	Ρυτηία	989
tī	105861	POWHEG	161
$b\bar{b}$	108405	Pythia	7.39×10^{4}
$c\bar{c}$	106059	Pythia	2.84×10^{4}

MS hit method

Hit significance for inner layer hits

Number of inner layer fake hits per selected ID track

Template fits for decay in flight elimination

Associated Hit Distance for Tagged ID Tracks at 20 GeV

Official result

Sample	Muid Combined	Staco
Data Efficiency	$0.987 \pm 0.007 \text{ (stat)} \pm 0.024 \text{ (syst)}$	$0.994 \pm 0.006 \text{ (stat)} \pm 0.024 \text{ (syst)}$
MC Efficiency	0.988	0.986
Scale Factor	$0.999 \pm 0.007 \text{ (stat)} \pm 0.024 \text{ (syst)}$	$1.008 \pm 0.006 \text{ (stat)} \pm 0.024 \text{ (syst)}$

不変質量分布

規格化:イベント数

Run 162764, evt 9973290

