

ATLAS実験におけるミューオンに崩壊 する重い新粒子の探索

石川明正,他ATLAS Collaboration

神戸大学

日本物理学会2010年秋季大会

1

Introduction

- ハドロンコライダーでは高運動量のミュ ーオン対はクリーンな Signature
- ATLAS ミューオン検出器
 - |η| < 2.7
 - *cf*. CDF 高運動量μ |η| < 1.0
- - 断面積の小さい領域まで探索可能
 - Tevatronの制限を超える
- Z'がミューオン対に崩壊するモードのシ
 ミュレーションによる探索感度の研究

Z'

- 新たなゲージ対称性 + 自発的破れ → Z'
 例えばGUT
- ゲージ群とその破れ方により性質が異なる
 - $Z'_{R}: SO(10) \rightarrow SU(4) \times SU(2)_{L} \times SU(2)_{R}$
 - Z'_{χ} : SO(10) \rightarrow SU(5) \times U(1)_{χ}
 - $Z'_{\phi}: E_6 \rightarrow SO(10) \times U(1)_{\phi}$
 - Z'_{η} : E₆, mixture of Z'_{χ} and Z'_{ϕ}
- ・ ベンチマークモデル
 - Sequential Standard Model (SSM) : Z'_{SSM}
 - 標準模型と性質が同じであるが質量だけ重い
- ・ 現在の質量の下限は CDF により決定
 - m_{z'SSM} > 1071 GeV
- これ以降は Z'_{SSM} を Z' と呼ぶ

シミュレーション

- ・ Full シミュレーション
- E_{CM} = 7 TeV
- ・ MCサンプル
 - $Z' → µµ : m_{Z'} = 1.0, 1.5 \text{ TeV} (σ = 130 \text{fb}, 15 \text{fb})$
 - Drell-Yan $\mu\mu$ (例えば0.8<M $_{\mu\mu}$ <1.25TeVだと σ = 3.6fb)
 - Irreducible background
 - Top pair (σ = 160pb, NLO)
 - QCD jets, $E_T > 8 \text{ GeV} (\sigma \sim 10 \text{ mb})$
 - σが大きいためこのままだと大量の積分Luminosity相当を作るのは無理
 - E_Tのbinごとに分けて生成し、background になる high E_T 領域の積分Luminotiy を増やす
- MCは Top pair だけが NLO Generator を用い他は LO で、σの Kfactor は考慮に入れていない

ミューオンの測定

- ATLAS検出器
 - ID: 内部飛跡検出器
 - $\delta p_T/p_T = 0.5 \ [TeV^{-1}] \times p_T \ (10\% \text{ at } p_T = 200 \text{GeV})$
 - |η| < 2.5
 - Cal:カロリーメータ
 - MS:ミューオン測定器
 - $\delta p_T / p_T = 10\%$ at $p_T = 1$ TeV
 - |η| < 2.7
- ミューオンの測定
 - トロイド磁場とミューオン測定器を用いて飛跡 を再構成し運動量を測定
 - カロリーメータでのエネルギー損失を補正
 - 内部飛跡検出器による飛跡とのマッチング
 - 運動量分解能の改善
 - cosmic BGの減少

ミューオンの運動量分解能

- 高運動量のミューオンの分解能が解析の鍵
- - トロイド磁場の積分が小さくなる 1.2< |η|<1.7 を除き5%以下
 - バレルとエンドキャップトロイド磁石による複雑な磁場
 - p_T~0.5TeV で 5%程度
- 1TeVの Z'を測定するのに十分な分解能

ミューオンの検出効率

- 検出効率をη, φ, p_Tの関数で測定
- 検出効率のよくない領域
 - |η| **~** 0
 - バレルミューオン検出器のサービス
 - $|\eta| \sim 1.2$
 - バレルとエンドキャップの境目
 - | | | ∼ −1, −2.2
 - アトラス検出器の足
 - 検出器がある場所では 95% 程度の効率
- p_T が高くなると、検出効率が落ちる
 - 制動放射の影響
 - 1TeVのZ'の測定に重要なp_T<0.5TeVでは 92%以上

再構成

- Z' だけでなく他の重い共鳴も探れるように単純で robust な selection
 - ミューオントリガー p_T > 10 GeV
 - p_τ > 20 GeV, |η| <2.5 を満たす異電荷 のmuon対
 - 内部飛跡検出器での track Isolation
 - $\Sigma p_{T}^{track} / p_{T}^{muon} < 0.05, \Delta R < 0.3$
 - QCD background の完全な除去
 - Top pair の 65% を除去
 - Signal は 99%以上の検出効率
 - 不変質量の再構成
 - log scale でもきれいなピーク
 - ・ ほぼBackground free
 - シグナル領域
 - > 0.8TeV for M=1.0TeV Z'
 - > 1.2TeV for M=1.5TeV Z'
 - 検出効率は~55%

系統誤差

- 検出効率
 - 50pb⁻¹のデータを用いると仮定
 - 50k events の Z→µµ が良い較正サンプル
 - 2009年のcosmic rayを用いた alignment の結果
 - これらの仮定から計算
 - ミューオン検出効率 10%
 - 運動量スケール 3%
 - 運動量分解能 バレル 200%、エンドキャップ100%
 - 運動量分解能の不定性によるZ'検出効率の誤差は3%程度
 - Z' signal の検出効率に対する系統誤差は 21%
- PDFの不定性による断面積の系統誤差
 - NLO PDF の不定性から Drell-Yanの断面積の不定
 性をdimuon mass の関数で計算(MCFM)
 - DY とZ'の不定性は同じ
 - 7% at 1 TeV
 - 11% at 1.5TeV
 - Factorization/renorm. scale は無視できる J. M. Campbell and R. K. Ellis, Phys. Rev. D **62 (2000) 114012.**

Symmetric rrror Asymmetric error

発見

- Significance を以下のestimator を用いて計算
 - $S = \sqrt{2((s+b) \ln(1+s/b)-s)}$
 - 不定性は Likelihood を計算する際に入れる
 - - A:>5σ

B:>5 σ かつ signal > 10 events

	1 TeV	1.5TeV
А	85pb ⁻¹	720pb ⁻¹
В	170pb ⁻¹	1600pb ⁻¹

排除

- Frequentist アプローチによる CL を設定 T. Junk, 1999, Nucl.Instrum.Meth.A434:435-443.
 - Signalとbackgroundで独立な系統誤差はそのまま取り扱える
 - 独立でない系統誤差は Toy MCを用い見積もる。
 - 95% CLとなる Luminosity を設定

	1 TeV	1.5TeV
Lumi	60pb ⁻¹	500pb ⁻¹

まとめ

- シミュレーションにおいて、Z'がミューオン対崩壊する事象の探索感度を研究した
- 高運動量領域でもミューオンの検出効率・運動量分 解能は十分である
- 1TeV の SSM Z' は 60pb⁻¹ で排除、もしくは 170pb⁻¹
 で発見可能である
 - 電子と合わせれば 1/2 のルミノシティー
 - » Background free
 - 30pb⁻¹で排除、85pb⁻¹で発見
- 今年中に 40±10 pb⁻¹取得する予定
 - Tevatronを超える質量の下限が設定できる
 - 発見は来年以降