

<u>結束晃平,</u> 坂本宏, 織田勧, 久保田隆至, 松下崇^A 他 ATLAS Collaboration

東大素セ,神戸大理^A

Total Integrated Luminosity [pb⁻¹]

Opposite Sign muon pairs

10⁴

10²

1

1

2010 秋季 日本物理学会 13pSK03

10²

 $M_{\mu\mu}$ [GeV]

10

// なぜクォーコニウム(J/ψ) か / 何を測定するか

なぜクォーオコニウムか? 実験初期に観測される物理事象の一つ→豊富な統計量

 \rightarrow J/ ψ は共鳴幅が狭いため、di-muonチャンネルが検出器システムの評価に有用

Channel	Statistics in ATLAS s = 7 TeV, 1pb ⁻¹
J/ ψ → μμ	~ 10K
Y → µµ	~ 1K
Z → μμ	~ 0.1K

- クォーコニウム生成メカニズムの理解 → 次の講演
- Bの物理
- Light CP-odd Higgs bosonの探索

$$\sigma = \frac{N}{L \cdot (A \cdot \prod \varepsilon)}$$

N:観測された信号数 L:ルミノシティ A:アクセプタンス ε:効率

→ 断面積測定には効率(トリガー, 再構成)の測定が不可欠

最内部 : 内部飛跡検出器 中央部 : 電磁 · ハドロンカロリメータ 最外部 : **ミューオンスペクトロメータ** η < 1.05 Barrel領域 η>= 1.05 End-Cap領域 **トリガー検出器が異なる**

初段トリガーがレベル1トリガー
 →p_Tをハードウェアで6段階にラベル付け・評価する
 →実験状況に応じて変更可能なトリガーメニュー
 現時点でのレベル1ミューオントリガーメニュー:
 MU0(もっとも緩いトリガー条件) など6段階

//ミューオン再構成アルゴリズム

·Combined トラッキング

- ミューオンスペクトロメータの情報
- 内部飛跡検出器の情報
- カロリメータでのenergy deposition情報

- ·Segment tagger 低い運動量を持つミューオンに対して有効 - 内部飛跡検出器の情報
- ミューオンスペクトロメータの部分的な情報

- ·Calorimeter tagger
- 内部飛跡検出器の情報
- カロリメータの情報

ミューオンスペクトロメータ単体 での再構成も可能

// 解析条件

統計量~330nb⁻¹

// Pre selection

- Triggers requested: L1_MU0
- --衝突点から来できたるいたいシントであることを要求
- Each track >=6 SCT hits, >=1 pixel hit

// Tag selection

- Combined muon
- pT of associated ID track > 4 GeV
- | _|<2.5
- -- Combined ミューオンを要求 (ミューオンであることを保証するため)
- 衝突由来の軌跡であることを要求(宇宙線の可能性の除去)
- $p_{Tif(| | < 1.9)}^{as}$ nHits(nTRTHits + nTRTOuliers) > 5 && outliers/nHits ≤ 0.9
 - if($| \rangle = 1.9$) require outlierd/nHits<0.9 only when nHits >5
- impact parameter w.r.t. Primary Vertex cuts: d0 (<0.3mm), z0(<1.5mm),

d0 and z0 significance <3 (in addition, track d0 at perigee <2mm)

// Probe selection

内部飛跡検出器の情報のみを用いる(ミューオンスペクトロメータの情報は使わない)

など

- --「衝突由来の軌跡である」とを要求(宇宙線の可能性を除去)
- p_T > 2GeV

など

など

// Cuts on Tag & Probe

- Tag及びProbeが共通のパーデックアから来でいることを要求
- 反対の電荷同士であること

2010 秋季 日本物理学会 13pSK03

7

// 背景事象の除去 ~Simultaneous fitting~

<u>一つの関数でfitし, fittingパラメタとしてefficiencyを算出する</u>

11

// ProbeへCalorimeter Tagger再構成情報を要求すると...

例) Probe pT 4GeV to 5GeV

// 再構成/トリガー効率の比較

Binominal Error

// まとめ・今後の展望

- 初期に観測される物理としてクォーコニウムがあり、生成断面積の測定は重要 → 正確な効率測定が不可欠
- J/ψは狭い共鳴幅を持つので、それ自体が実験システムの評価に有用 → Tag&Probe法
- これまでに得られたLHCでの重心系エネルギー7TeVデータに対して 検出器の再構成及びトリガー効率測定にTag&Prboe法を用いた → 本実験で初めて絶対的な再構成効率とレベル1トリガー効率を決定した

今後、

- 統計量を増やし、より詳細な測定を行う
 → より高いp_T領域まで測定できるようになり、
 high-p_Tミューオンを含む物理にとっても重要
- 系統誤差の評価
- 生成断面積の測定

 \leftarrow Backup slides \rightarrow

異常なピークやshapeなどは見られない

// probe 分布の比較

//Muon selection

"STACO container" Combined: match ² < 150. Tagged: TMath::Prob(match ², ndof) > 0.0027

"MUID container" Combined: no cuts Tagged: IMuonSegmentTaggerValidationTool MuGirl: no cuts

note: using "allAuthors" to avoid signal-miscount due to the priority

that exists in the "primary author"

// Common cuts as standard selection

// Pre selection

- Triggers requested: L1_MU0
- At least 1 primary vertex with >=3 tracks
- Each track >=6 SCT hits, >=1 pixel hit

// Tag selection

- Combined muon
- pT of associated ID track > 4 GeV
- | |<2.5
- Track hit quality:
 - -- SCT hits >=6 && Pixel hits >=1
 - -- as TRT Hits cuts,
 - if(| | < 1.9) nHits(nTRTHits + nTRTOuliers) > 5 && outliers/nHits < 0.9
 - if(| $| \ge 1.9$) require outlierd/nHits<0.9 only when nHits >5
- impact parameter w.r.t. Primary Vertex cuts: d0 (<0.3mm), z0(<1.5mm), d0 and z0 significance <3 (in addition, track d0 at perigee <2mm)

// Probe selection

- pT > 2 GeV
- | |<2.5
- Track Hit quality is the same ones of tag

// Cuts on Tag & Probe

- Tag and probe ID tracks should come from a common vertex
- 2 of the vertex fit <6
- R<3.5

// STACO Data Tag

// Data set

"Data" Stream: MuonswBeam Period: B, C, D (~330nb⁻¹)

"MC"

- STACO -

mc09_7TeV.108496.Pythia_directJpsimu0mu0.merge.AOD.e540_s765_s767_r1306 - MUID -

mc09_7TeV.108496.Pythia_directJpsimu0mu0.recon.ESD.e540_s765_s767_r1302

// Using code

TrigEffJpsiTools-00-06-17-45 (added MuTagIMOTools and ExtendedBunch.cxx/h)