Analysis of the top quark pair production with di-leptonic final state in the ATLAS Experiment

JPS 2010 Autumn meeting@Kyushu Institute of Technology 13 Sep., 2010

Minoru Hirose, Kazunori Hanagaki Osaka Univ.

Introduction

Large Hadron Collider(LHC)

The world's largest
and most powerful collider.
→Proton-Proton collisions
→3.5 TeV beam energy.
→√s = 7TeV !!

the ATLAS Experiment

- General purpose detector.
 Higgs hunting
 SUSY search
 Extra Dimensions
- ▶ 3.4pb⁻¹ recorded

We are taking data stably!!

top quark pair production

 \cdot di-muon final state of the top quark pair production

• Easy to distinguish from background !!

1) measure the cross section precisely

➡Validate QCD at higher energy

2) can be a good b-quark source

b-tagging plays important role to search for Higgs/SUSY

Event Selection for ttbar analysis(di-muon)

Object Definition

- Electron : Pt > 20GeV, Isolated electron
- Muon : Pt > 20GeV, Isolated muon
- ▶ Jet : Pt > 20GeV

Event Selection

1. #muons >=2

leading two muons have the opposite charge

- 2. |MII Mz| > 10GeV (Z-veto)
- 3. Missing Transverse Energy(MEt) > 30GeV
- 4. At least two jets
- 5. exact 2 muons with no selected electron
- 6. muon trigger requirement

Real Data Analysis(Data-MC comparison)

- using 3.106pb⁻¹ (Currently ~3.4pb⁻¹ recorded)
 - After all selection...
 - →expected events : 2.834+/-0.077 (signal=1.992, BG=0.841)
 - →observed events : 3

some bins are inconsistent???

Real Data Analysis for di-muon events

 \cdot Muon kinematics, MEt, $\Sigma\left|\text{Pt}\right|$ distributions

10

10

10⁻

10⁻²

20

40

60

1294 di-muon events observed

-muon)

her)

trigge,

sinale top

ttbar(other)

0 80 10 MEt[GeV]

di-muon mass

Need to investigate. →smeared Z-mass →higher MEt

10⁴

10

10

10

10

10⁻¹

10⁻¹ 10⁻² 10⁻²

70

70

Real Data Analysis for di-muon events

- \cdot Muon kinematics, MEt, Σ [Pt] distributions
 - 1294 di-muon events observed

-muon)

her)

^{tri}gger

Need to investigate. →smeared Z-mass →higher MEt 70

Consistent with MC !!

analysis of tt with b-tagging

- two b-quarks in final state
 - Requiring at least one b-tagged jet
 - →does not lose so many signals
 - ➡reject most of background events
 - reduce systematic uncertainty from b-tagging efficiency

-
$$\sigma_{P_{\text{AtLeast}}} = 2(1 - \varepsilon_b)\sigma_{\varepsilon_b}$$

- Question
 - 1. Which b-tagging algorithm is the best one.
 - 2. Which b-tagging operation point works well.
 - 3. How much "S/ $\sqrt{S+N}$ " and "S/N" we can achieve.

b-tagging optimization(Answer of 1 & 2)

- · Significance(S/ $\sqrt{S+N}$) as a function of b-tagging efficiency
 - For different tagging algorithms
 - require at least one b-tagged jet after the event selection of the analysis without b-tagging.

→Higher ε_{b} looks good. →No big difference between taggers except SVO. (SVO cannot reach $\varepsilon_{b} > 60\%$)

#Signals and #BGs (Answer of 3)

- \cdot S/N improved very well! (by factor ~3.5)
- Main BG : $Z \rightarrow \mu \mu$ (real di-muon in final state) Single Top(Wt) (real di-muon and real b-quark)

mumu channel : ε_b=60%

Assumed Stat. = 10 pb^{-1}

	w/o b-tag	with b-tag	(with btag) / (w/o btag)
W+jets	0	0	-
Z+jets	1.98	0.57	0.29
Di-Boson(WW,WZ,ZZ)	0.13	0.03	0.23
single top(Wt,t/s-chan)	0.23	0.16	0.70
ttbar(other final state)	0.01	0.01	1.00
BG total	2.36 +/- 0.35	0.55 +/- 0.08	0.23
signal	6.52 +/- 0.17	5.35 +/- 0.16	0.82
S/N	2.76 +/- 0.42	9.58 +/- 1.40	3.47
S/√S+N	2.19 +/- 0.06	2.20 +/- 0.05	1.00

Measurement of b-tag performance

- To measure a b-tag efficiency and a fake rate,
 - Template fitting method
 - →template : discriminant which isn't used for b-tag algorithm

Pt_{rel} as a discriminant

Pt_{rel} : Transverse Pt of muon in jet.
 Pt_{rel} = Pt(muon)_⊥ w.r.t.JetAxis

- real b-jet : Pt_{rel} reaches up to ~2.5GeV
 (because typical b-hadron mass is ~5GeV)
- Pt_{rel} can be a good discriminant.

before btag

after btag

Applying this method to real data

Estimated $\varepsilon_{b} = 0.61 + / - 0.04$ Estimated $\varepsilon_{c+1} = 0.15 + / - 0.01$

Applying this method to real data

Estimated $\varepsilon_{b} = 0.61 + / - 0.04$ Estimated $\varepsilon_{c+1} = 0.15 + / - 0.01$

Slightly lower efficiency than MC

Conclusions

- ATLAS Experiment started in March 2010!!
- \cdot Analysis of t\bar{t} production in di-muon final state
 - Currently 3 events observed(expected 2.834 event)
 - Distributions of di-muon event is almost consistent with MC.
 Need some investigation.
- With b-tagging, S/N ratio will improve by factor ~3.5.
 S/N ~ 9.5
- b-tagging efficiency measurement
 - using pT_{rel} fitting method
 - →method is validated by using MC.
 - ➡For data, we see a slightly lower b-tagging efficiency.

Backup

less b-tagging systematic uncertainty

- requiring "at least one b-tagged jet"
 - we can reduce a systematic uncertainty from the b-tagging efficiency by a factor $(1 \varepsilon_b)$.
 - For the event with two real bjets(e.g. ttbar)

→ "at least one b-tagged jet":

$$P_{\text{AtLeast}} = \varepsilon_b^2 + 2\varepsilon_b(1 - \varepsilon_b)$$
$$= \varepsilon_b(2 - \varepsilon_b)$$
$$\Rightarrow \sigma_{P_{\text{AtLeast}}} = 2(1 - \varepsilon_b)\sigma_{\varepsilon_b}$$

⇒We'll get one more good thing if we apply a loose b-tag requirement!!

#Signals and #BGs (Detail)

mumu channel : $\varepsilon = 70\%$

	w/o b-tag	with b-tag	(with btag) / (w/o btag)
W→ev	0	0	-
W→µv	0	0	-
W→τv	0	0	-
Z→ee	0	0	-
Z→µµ	1.57	0.44	0.28
Ζ→ττ	0.41	0.13	0.32
Di-Boson(WW,WZ,ZZ)	0.13	0.03	0.23
single top(Wt,t/s-chan)	0.23	0.16	0.70
ttbar(other final state)	0.01	0.01	1.00
BG total	2.36 +/- 0.35	0.55 +/- 0.08	0.23
signal	6.52 +/- 0.17	5.35 +/- 0.16	0.82
S/N	2.76 +/- 0.42	9.58 +/- 1.40	3.47
S/√S+N	2.19 +/- 0.06	2.20 +/- 0.05	1.00

Assumed Stat. = 10 pb⁻¹