LHC-ATLAS 実験における トップクォーク対生成断面積測定

名古屋大学 高エネルギー物理学 (N) 研究室

奥村恭幸 戸本誠, LHC-ATLAS top quark WG

トップクォーク対生成断面積測定 @ LHC

2 /8

- <u>LHC実験でのトップクォーク対生成断面積測定</u>
 - -7 TeV 領域での初の標準理論の精密検証
 - 断面積 ~ Tevatron x 25
 - ATLAS 検出器の top quark 同定能力の精密な理解
 - Higgs 粒子/ SUSY 粒子探索の背景事象
 - ttH 過程を用いた湯河結合定数の測定

ダイミューオン終状態の信号の特徴

<u>ダイミューオンチャンネル</u> - 2本のミューオン飛跡 - σ_# x BR(μμ) = 2pb⁻¹, ε_{selection} = 30%

3 /8

- → 70 事象 / 100 pb⁻¹ (2010年)
- <u>主な背景事象</u> - Z(→µµ)+jets
- <u>事象選別</u>
 - ミューオントリガー
 - イベントセレクション
 - 2本の異符号のミュー粒子検出
 2 muons with pT > 20 GeV/c², isolated
 - 2本の high-pT ジェット
 2 jets with pT > 20 GeV/c
 - vに伴う横エネルギーのアンバランス
 Missing ET > 35 GeV
 - M_{µµ} が M_Z (91GeV)を組まない
 M_{µµ} < 86 GeV, 96 GeV < M_{µµ}

断面積測定と選別効率測定

• <u>断面積測定</u>

- 選別効率
 - 1. 信号事象がミューオントリガー条件を満たす確率 ($\epsilon_{trigger}$)
 - 2本のミューオンがともにミューオンとして検出 (muon-ID) される確率 (ε_{2muons})
 - 3. Jetの本数/Missing ET/ di-muon mass の 選別条件を満たす確率 (ε_{cut})
 - 4. 検出器のアクセプタンス ($\varepsilon_{acceptance}$)

<u>実験初期の段階でミュー粒子検出器の特性を理解し</u> 選別効率を正確に評価して断面積の測定を行う

ミュー粒子の ID/Trigger の効率の評価

5 /8

- Simulation Data を用いた手法の検証
 - 擬似データとして 40pb⁻¹のZ+jets のMCシミュレーション データ (*) を用いる.

(*) サンプルトラック選別による Z 事象の純度は 99 % 以上.
 tt事象の位相空間に外挿し、tt 事象のMC と比較.

ID 効率 / Trigger 効率の評価

実験初期の統計量 (40pb⁻¹) で ID • Trigger 効率を tt 事象に外挿可能

事象選別効率の評価

- ダイミューオン事象に Look up table を適応
 - 少なくともどちらか一方のミューオンがミューオントリ ガー条件を満たす.
 - $\epsilon_{\text{trigger}} = 1 (1 \epsilon_{\text{trigger}}(\eta_1, \phi_1)) \times (1 \epsilon_{\text{trigger}}(\eta_2, \phi_2))$
 - 二本の高運動量ミュー粒子が検出される.

 $\epsilon_{2\text{muons}} = \epsilon_{\text{ID}}(\eta_1, \phi_1) \times \epsilon_{\text{ID}}(\eta_2, \phi_2)$

- <u>選別効率のデータを用いた評価</u>
 - $-\epsilon_{\text{trigger}} \times \epsilon_{\text{2muons}} = 91.7 \pm 1.0\%.$ (91.1%)

40pb⁻¹の統計量を用いてダイミューオン事象選別の _{ɛ trigger} x ɛ _{2muons}は実データから評価が可能

まとめ

<u>トップクォーク対生成断面積</u> – 実験初期において重要かつ測定可能な(*)物理量 (*) 70 事象観測 / 100 pb⁻¹

- 7 TeV 領域における初の標準模型の精密検証
- ミュー粒子検出器を理解し選別効率を評価する手法の確立
 - トップクォーク由来のミューオンID 効率・ミューオン Trigger 効率を見 積もる<u>手法を確立</u>.
 - MC シミュレーションサンプルを使い、実験初期の統計量 (40 pb⁻¹)から <u>1.0%の精度で評価可能であることを確認</u>.
 - ミュー粒子トリガー効率
 1.3 %
 - ミュー粒子 ID 効率 0.5 %
 - ダイミューオン事象選別効率
 1.0 %
- <u>衝突データ蓄積開始後のスケジュール</u>
 - Z→µµ サンプルを用いた実機評価. (6000サンプル / 10 pb⁻¹)
 - Re-discovery @ CERN (~ 40 pb⁻¹)
 - 生成断面積の測定 (~ 100 pb⁻¹)

効率測定のテクニック

- <u>Muon 検出効率の測定</u>
 - 一本のミュー粒子飛跡
 - 異符号の荷電粒子飛跡.
 (pT > 20 GeV, isolated)
 - 不変質量が Z mass を与える
 - Charged track が muon として 検出されているか?

- <u>Muon 検出効率の測定</u>
 - 二本の異符号ミュー粒子飛跡 (伴に pT > 20 GeV, isolated)
 - - 片方がミューオントリガー条件を 満たすことを要求。
 - もう片方の muon ミューオントリ ガー条件を満たすか?

ミュー粒子 ID 効率の測定

- <u>事象選別</u>
 - Z→μμを、片方ミュー粒子 ID 無しで選別する. (評価に用いる)
 - 高横運動量ミュー粒子 (A)
 - (A) と異符号、pT > 20 GeV 以上、
 他の粒子と随伴しない荷電粒子飛跡が一本 (B)
 - (A) と(B)の不変質量がZ質量±5 GeV/c²
 - 背景事象は 0.1 % 以下.

• P(ミューオンID | 飛跡再構成 且つ 他の粒子と随伴しない)

トリガー効率の測定

P(ミューオントリガー | ミューオン ID)

生成断面積測定の方針

$\Delta\sigma/\sigma$ (%)	$\mu\mu$ channel
Stat only	-6.0 / 6.2
Luminosity	-17.4 / 26.2
Electron Efficiency	0.0 / 0.0
Muon Efficiency	-4.6 / 5.2
Lepton Energy Scale	-2.4 / 2.0
Jet Energy Scale	-3.0 / 4.5
PDF	-1.4 / 1.6
ISR FSR	-3.6/3.7
Signal Generator	-4.6 / 5.4
Cross-Sections	-0.3 / 0.3
Drell Yan	-2.2 / 2.2
Fake Rate	-1.1 / 1.1
All syst but Luminosity	-8.9 / 10.2
All systematics	-19.3 / 28.3
Stat + Syst	-20.2 / 29.0

シミュレーション研究による結果. (200pb⁻¹ @ 10 TeV *を想定*) ATL-PHYS-INT-2009-066 より転載

<u>ルミノシティ</u>

- pp の非弾性散乱数
 - $\delta \sigma_{\text{inelastic}}$
- 選別効率

● 背景事象

A

D

G

B

E

Η

96 Ge

F

 $E_{\scriptscriptstyle T}^{\scriptscriptstyle MISS}$

35 GeV

15 GeV

- Muon ID / Trigger (Data)
- Jet Energy Scale (Data & MC)
- Lepton Energy Scale (Data & MC)
- Missing ET (Data & MC)
 - JES, δ (JES), δ (LES), LES より δ (Missing ET) を評価. (Data)

– Drell-Yan (Data & MC)

•Drell-Yan のコントロールサンプルより信号 領域の数を評価 •MC によるファクター倍 •Data / MC の補正ファクター

Statistics & Background contamination

- <u>Statistics of probe tracks</u>
 - 61200 isolated probe tracks / 100pb⁻¹
- Background contamination
 - Probe tracks with pT>20 GeV is taken into account.
 - W+jets 0.028%
 - Tt 0.029%
 - QCD BG
- not yet studied.

Statistics & Background contamination

14/8

- <u>Statistics of probe tracks.</u>
 - 700 isolated probe muons / pb⁻¹
 (No pT cut applied to probe track. (*))
 - (*) 660 isolated probe muons / pb^{-1} (pT > 20 GeV)
- Physics process contribution.

 Z+jets 	99.7%
 W+jets 	0.1%
– tt	0.2%

