ATLAS実験におけるボトムジェット 同定効率の測定

<u>目黒立真</u>,花垣和則,内田桐日,Karl Jakobs^A, Christian Weiser^A 阪大理, Univ. of Freiburg^A

> Outline I, Introduction 2, Method 3, systematic uncertainty 4, statistic uncertainty 5, summary

- Precise measurement of top quark property
- Search for Higgs boson
- Search for new physics beyond standard model

Under commissioning now ...

b-tagging

b-tagging is important for

- Top quark
- (low mass)Higgs boson,
- SUSY \rightarrow MissingEt + bjet and so on...

Performance to be measured

- tagging efficiency
- tagging efficiency for light-jet or c-jet

b-tagging

b-tagging is important for

- Top quark
- (low mass)Higgs boson,
- SUSY \rightarrow MissingEt + bjet and so on...

Performance to be measured

- tagging efficiency This talk !
- tagging efficiency for light-jet or c-jet

Motivation

It is important to measure in several ways.

b-tagging efficiency measurement with real data is needed

pure b-jet sample is needed.

- →tt sample !
 - lepton+jet
 - dilepton
 - → few background
 - → simple and robust !! Can be used with early data!

5

Motivation

It is important to measure in several ways.

b-tagging efficiency measurement with real data is needed

pure b-jet sample is needed.

→tt sample !

- lepton+jet
- dilepton This talk !
 - → few background
 - → simple and robust !! Can be used with early data!

Method

To obtain pure b-jet sample (1)Choose tt sample : Event selection (2)Enhance b-jet fraction : "JetMultiplicity=2"

Then, calculate the b-tagging efficiency with equation:

$$\frac{N_{tagged}}{N_{all}} = \frac{\epsilon_b N_b + \epsilon_{other} N_{other}}{N_{all}}$$
N : The number of jet
E: The tagging efficiency

Higher the b-jet fraction \rightarrow less dependence on MC.

Method

To obtain pure b-jet sample (1)Choose tt sample : Event selection (2)Enhance b-jet fraction : "JetMultiplicity=2"

Then, calculate the b-tagging efficiency with equation:

EventSelection(signal)

Categorize events according to the flavor of two leptons. $\rightarrow ee/\mu\mu/e\mu$ channel

10 TeV data

EventSelection (background)

Expected number of events with 100 pb⁻¹

	ee	$\mu\mu$	emu
W+jets	1.39	0.28	2.62
Z+jets	2.85	10.29	8.83
Diboson (WW, WZ, ZZ)	1.15	1.48	3.77
SingleTop(Wt,t-chan)	3.76	3.28	9.29
total	9.15	15.33	24.51

EventSelection (background samples)

Expected number of events with 100 pb⁻¹

ee $\mu\mu$ emaW+jets1.390.282.62Z+jets2.8510.298.83Diboson(WW,WZ,ZZ)1.151.483.77SingleTop(Wt,t-chan)3.763.289.29total9.1515.3324.51
ee $\mu\mu$ emuW+jets1.390.282.62Z+jets2.8510.298.83Diboson(WW,WZ,ZZ)1.151.483.77SingleTop(Wt,t-chan)3.763.289.29total9.1515.3324.51
ee $\mu\mu$ emaW+jets1.390.282.62Z+jets2.8510.298.83Diboson(WW,WZ,ZZ)1.151.483.77SingleTop(Wt,t-chan)3.763.289.29
ee $\mu\mu$ emu W+jets1.390.282.62Z+jets2.8510.298.83Diboson(WW, WZ, ZZ)1.151.483.77
ee $\mu\mu$ ema W+jets1.390.282.62Z+jets2.8510.298.83
ee $\mu\mu$ emu W+jets 1.39 0.28 2.62
$ee \mu\mu emu$

few background events!!

EventSelection (background samples)

Expected number of events with 100 pb⁻¹

	115.0	105.0	333.0	
44	115.0	162.6	323.0	
total	9.15	15.33	24.51	
eTop(Wt,t-chan)	3.76	3.28	9.29	
$\operatorname{on}(WW, WZ, ZZ)$	1.15	1.48	3.77	
Z+jets	2.85	10.29	8.83	
W+jets	1.39	0.28	2.62	
	ee	$\mu\mu$	emu	
	W+jets Z+jets on(WW,WZ,ZZ) eTop(Wt,t-chan) total	ee $W+jets$ 1.39 $Z+jets$ 2.85 $on(WW, WZ, ZZ)$ 1.15 $eTop(Wt, t-chan)$ 3.76 total 9.15	ee $\mu\mu$ W+jets1.390.28Z+jets2.8510.29on(WW, WZ, ZZ)1.151.48eTop(Wt,t-chan)3.763.28total9.1515.33	ee $\mu\mu$ emuW+jets1.390.282.62Z+jets2.8510.298.83on(WW,WZ,ZZ)1.151.483.77eTop(Wt,t-chan)3.763.289.29total9.1515.3324.51

But, still there are light jet in tt events (b-jet fraction is only ~50%) These light-jets should be removed using kinematic cut!

Enhance the b-jet fraction

light jets are still exist (tt + jets)

 \rightarrow Enhance b-jet fraction with Jet Multiplicity cut

I will measure the b-tagging efficiency after obtaining enough amount of data...

In following slides, Stat. and Syst. uncertainty was estimated with pseudo experiment.

Systematic uncertainty

Table. systematic uncertainty (in %)	AT W	ork-in-progres
JetEnergyScale	JES +7%	0.94
(JES)	JES -7%	-0.37
b-jet Labelling	$\Delta R < 0.2$	0.72
default:	$\Delta R < 0.4$	-0.69
$\Delta R(jet, b-quark) < 0.3 \Rightarrow "b-jet"$	$\Delta R < 0.5$	-0.98
Generator	herwig	-1.83
	pythia	0.68
Initial State Radiation(ISR)/	+ISR/FSR	0.14
Final State Radiation(FSR)	-ISR/FSR	-1.76

<2.9% systematical uncertainty

Stat. uncertainty Luminosity dependence @ 50% effi. (Scaled to 7TeV)

summary

- •l established the method of b-tagging efficiency measurement with tt dilepton events using real data
- •Requirement of "Jet Multiplicity=2" enhanced the b-jet fraction $50\% \Rightarrow 70\%$
- •Statistical uncertainties < ~4.9% (100pb-1)
- •Systematical uncertainties < ~2.9% (100pb-1)
- •It is difficult to use binning method with early data < $I fb^{-1}$

back-up

b-tagging

b-tagging is important for

- Top quark
- (low mass)Higgs boson,
- SUSY \rightarrow MissingEt + bjet and so on...

Two types of tagger

- •Secondary vertex
- •Soft lepton (20% of b-jet decay into lepton)

Performance to be measured

tagging efficiency for light-jet or c-jet

Tracks from b-hadron

vertex

Strategy to enhance the b-jet purity

Kinematics

While I saw various kinematic distributions,

black:b-jet blue:l-jet

not normalized each event has 2 jet-lep combinations, >2 jet-jet combinations.

I could not find any reasonable valuable to distinguish b-jets from I-jets. **NOTE:** Pt, Eta should not be used to avoid the bias.

EventSelection

Categorize events according to the flavor of two leptons.

 \rightarrow ee/µµ/eµ channel

Event Selections

- 1, Two leptons (>20 GeV)
- 2, leptons with opposite sign
- 3, Z mass veto (86 GeV < $M_{two \ leptons}$ < 96 GeV for **ee/µµ**)
- 4, Missing Et (\aleph_{χ} >35 GeV for **ee/µµ**, \aleph_{χ} >20 GeV for **eµ**)
- 5, Jet Multiplicity ≥ 2

← the same cut to: ATL-PHYS-PUB-2009-086

100 pb-1

	initial	$2 \mathrm{leptons}$	opposite	Z mass	MET	$NJet \ge 2$
			sign	veto		
ee	20286.0	173.7	171.2	158.5	129.0	115.8
		(0.86%)	(98.52%)	(92.62%)	(81.36%)	(89.76%)
$\mu\mu$	20286.0	242.8	241.9	225.2	181.7	163.6
		(1.20%)	(99.63%)	(93.11%)	(80.70%)	(90.02%)
$e\mu$	20286.0	424.7	421.0	421.0	394.2	353.0
		(2.09%)	(99.12%)	(100%)	(93.63%)	(89.56%)

EventSelection (background samples)

Expected number of events with 100 pb⁻¹

	ee	$\mu\mu$	emu
$W \rightarrow e\nu$	1.39	0.00	0.00
$W \rightarrow \mu \nu$	0.00	0.00	2.62
$W \rightarrow \tau \nu$	0.00	0.28	0.00
$Z \rightarrow ee$	1.48	0.00	0.00
$Z \rightarrow \mu \mu$	0.00	8.70	1.36
$Z \rightarrow \tau \tau$	1.37	1.59	7.47
Diboson(WW, WZ, ZZ)	1.15	1.48	3.77
SingleTop(Wt ,t-chan)	3.76	3.28	9.29
total	9.15	15.33	24.51

Systematic uncertainty (explanation) skip this slide....

· Jet Energy Scale

source	f ₊	f_
Jet energy scale eta <3.2	1.07	0.93
Jet energy scale eta >3.2	1.15	0.85
Jet energy resolution eta <3.2	σ(E)=0.45*sqrt(E) ⁽³⁾ (E in GeV)	
Jet energy resolution eta >3.2	σ(E)=0.63*sqrt(E) ⁽³⁾ (E in GeV)	

This recipe was introduced in the talk by Wolfgang Mader (TU Dresden) <a><u>@http://indico.cern.ch/conferenceDisplay.py?confld=69521</u>

Labeling

DeltaR(jet,b-quark) < 0.2, 0.3, 0.4, 0.5 (default is 0.3)

Generator

mc08.105205.AcerMCttbar.merge.AOD.e429_s462_r635_t53 (Pythia) mc08.105206.AcerMCttbarHerwig.merge.AOD.e429_s462_r635_t53 (Herwig)

• ISR/FSR

mc08.106250.AcerMCttbar.merge.AOD.e429_a84_t53 mc08.106251.AcerMCttbar.merge.AOD.e429_a84_t53

Binning method for Pt, Eta

ex) luminosity 40 pb-1 with 10 TeV data roughly corresponding to 100pb-1 with 7TeV data

- Same method was used for pseudo experiment.
- Weight value for 50% effi. was used.

Some informations

Used release : 14.2.25 Used code: TopPhysDPDMaker

Used Dataset :

Signal sample:

ttbar : mc08.105200.T1_McAtNlo_Jimmy.merge.AOD.e357_s462_d150_r642_t53

Background samples:

```
10 Tev
```

W+jets : mc08.10768XX.AlpgenJimmyWenuNpXX_pt20.recon.AOD.e368_s462_r635 (rel 14.2.25.8) Z+jet : mc08.10765XX.AlpgenJimmyZeeNpXX_pt20.merge.AOD.e376_s462_r635_t53 (rel 14.2.25.8) ("XX" is from 0 to 5)

Diboson:

mc08.105985.WW_Herwig.merge.AOD.e379_s462_r635_t53_tid094701 mc08.105986.ZZ_Herwig.merge.AOD.e379_s462_r635_t53_tid065594 mc08.105987.WZ_Herwig.merge.AOD.e368_s462_r635_t53_tid065595 Single top: mc08.105500.AcerMC_Wt.merge.AOD.e352_s462_r635_t53_tid064630 mc08.105502.AcerMC_tchan.merge.AOD.e352_s462_r635_t53_tid068303_3

Systematics samples:

Generator:

mc08.105206.AcerMCttbarHerwig.merge.AOD.e429_s462_r635_t53 (Herwig) mc08.105205.AcerMCttbar.merge.AOD.e429_s462_r635_t53 (Pythis) ISR/FSR mc08.106250.AcerMCttbar.merge.AOD.e429_a84_t53_tid072754

mc08.106251.AcerMCttbar.merge.AOD.e429_a84_t53_tid072755

Physical object reconstruction

Electron	Jets	Muon	MET
Pt>20GeV	Pt>20GeV	Pt>20GeV, eta <2.5	MET_RefFinal
isEM :Medium	eta <2.5	Isolation (cone=0.2) :<6GeV	
0< eta <1.37 , 1.52< eta <2.47	Cone4H1Towerlets	isCombinedMuon=true	
Isolation (cone=0.2) : <6GeV	OR: electron within delR<0.2	author Staco muons	
· · ·		OR: jet within delR<0.3	