Atlas検出器を用いた 2jet + missingの研究

日本物理学会 2009年秋季大会@甲南大学

東大理, 東大素粒子センター^A 武市祥史, 浅井祥仁, 片岡洋介^A, 小林富雄^A Motivation

squarkとgluinoのmass scaleは同じか? →squarkとgluinoはLHCで同時に見えるか?

(ex.)
mSUGRA
$$m^2(\tilde{q}) \approx m_0^2 + O(1) \cdot m^2(\tilde{g})$$

gluino massがTeVスケールでLHCで発見できるとして、

squarkとgluinoがLHCで同時に見える
$$\rightarrow m_0$$
が小さい。
LHCではgluinoしか見えない $\rightarrow m_0$ が大きい。

→squarkとgluinoが同時に見えるかどうかでmoがどの程度かがわかる。

squark とgluinoのmassが 同じスケールなのか、違うスケールなのかということは、 "m。"を決めるために重要であり、 SUSYのモデルを理解する上で重要である。

Gluinoが生成される事象ではsquarkの生成の有無に関わらず、multijet + missingの事象になる。 一方、squarkのpairが生成される場合、2jet + missingの事象になる。

Multi jet + missing と 2 jet + missingの解析の両方にSUSY-likeな信号が見えるか、 Multi jet + missing だけで見えるのかで、squarkの存在の可能性を吟味することができる。 √s=10TeVのsampleを使用。

SignalとしてmSUGRA モデルを使用。Generator:Herwig (m₀=100GeV, m_{1/2}=300GeV, A₀=-300GeV, tanβ=6, μ>0)

代表的	りなmass spectrum	Sa	ample xsec
ũ L	631.5GeV	<u> </u>	0.26pb
ũ _R	611.8GeV	q g	2.09pb
ĝ	717.4GeV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.18pb

BGとして、 W + jet/Z + jet Alpgen Top pair MC@NLO QCD Jet Pythia を使用した。

G4ベースのfull simulationでplotを作成。

Selection criteria

lepton(Pt>20GeV/c)の数によって2つのanalysisに分ける。

2jet + missing analysisはmulti jet + missing analysisと似た方法

1.の条件→ Njet(Pt>50GeV/c&&|eta|<2.5) = 2 同様に One lepton mode と No lepton mode に分けて解析する。⁵

Multi jet + missing analysis

→Multi jet + missing analysisはone lepton, no lepton ともにSUSY-likeなexcessが見える。

2jet + missing analysis

→2jet + missing analysisはsquark に対してsensitive.

(one lepton modeについても同じような結果が得られる。)

→Multi jet + missing analysisでSUSY-likeなexcessが見えた時、 2jet + missing analysisもSUSY-likeなexcessが見えれば、 Squarkがgluinoと同じmass scaleに存在を示唆する。 次にsquark massを重くし、2jet + missing analysisのplotをだしたかったが...

Squarkのxsecを少しずつ変化させることで 6つのsampleを用意し、significanceの変化を見る。

	gluino pair	squark, gluino	squark pair
xsec	0.26pb	2.09pb	2.18pb
Sample 1(factor1.0)	× 1.0	× 1.0	× 1.0
Sample 2(factor0.7)	× 1.0	× 0.7	× 0.7
Sample 3(factor0.5)	× 1.0	× 0.5	× 0.5
Sample 4(factor0.3)	× 1.0	× 0.3	× 0.3
Sample 5(factor0.1)	× 1.0	× 0.1	× 0.1
Sample 6(factor0.0)	× 1.0	× 0.0	× 0.0

sample1(factor1.0)のmass

ũ L	631.5GeV
ũ _R	611.8GeV
ĝ	717.4GeV

13pSA-5

One lepton mode

	S/√B	#excess(>300)		S/√B	#excess(>250)
Sample1(×1.0)	5.6	6.1	Sample1(×1.0)	22.6	101.1
Sample2(×0.7)	3.9	3.7	Sample2(×0.7)	16.8	70.9
Sample3(×0.5)	2.8	2.3	Sample3(×0.5)	12.8	50.8
Sample4(×0.3)	1.7	1.1	Sample4(×0.3)	8.9	30.7
Sample5(×0.1)	0.6	0.3	Sample5(×0.1)	5.0	14.5
Sample6(×0.0)	0	0	Sample6(×0.0)	3.1	6.5

squarkのxecがoriginalの30%以下だった場合、 one lepton mdeでは95%CLでsquarkの確認をすることができない。

No lepton mode

	S/√B	#excess		S/√B	#excess
Sample1(×1.0)	16.5	70.3	Sample1(×1.0)	33.2	313.1
Sample2(×0.7)	11.6	40.4	Sample2(×0.7)	24.1	190.9
Sample3(×0.5)	8.3	21.4	Sample3(×0.5)	18.1	109.5
Sample4(×0.3)	5.0	7.3	Sample4(×0.3)	12.0	39.0
Sample5(×0.1)	1.7	0.5	Sample5(×0.1)	6.0	3.3
Sample6(×0.0)	0	0	Sample6(×0.0)	2.9	1.0

No lepton modeではsquarkのxsecが10%までsquarkの存在を示唆できる。

10

Conclusion-1

* Multi jet analysisでSUSY-likeなexcessがある場合、 2 jet + missing (+lepton)でのexcessがあるかないかで squark pairの有無を探ることができる。 squarkを探ることでmoのスケールを探ることができ、SUSY Studyの第一歩となる。

* 2jet + missing analysisは "squark" を探すカギであり、 xsecの0.1倍まで探ることができる。

Data-driven Background estimation

SUSY search のkeyであるmETと無相関な Transverse mass(Mt)を用いて Mt 法 Signal dominantな領域のBGを評価する。

Missing ET

AおよびCはSignalの影響をなるべく受けないようmET<150GeVの領域を使用。 逆にDの領域はSignalの影響を受けるようmET>300GeVの領域を使用した。

2jet one lepton modeに対して Control RegionからSignal RegionのBGを評価する。

Control Regionのmissingに補正を加えないといけない。 例えば、Signal RegionのBGが全てZであればW→lvのlを全て vに書き換えればmissing ETが揃う。 Off-shellの問題が無ければ、ZとWは同数なため、W→lvのlを<u>半分</u> vに書き換えれば揃う。 よってleptonの半分から全部をニュートリノに書き換えればよい。

Conclusion-2

*2jet + missing analysisでMt 法が単純にはBGの評価として使えない。

→One lepton modeに関しては、off-shellのWの問題でうまくいかない。(調査中)

→No lepton modeに関しては、Control Region BGはWがメインだが、 Signal Region BG はWとZで構成されている。 そのため、単純なMt法では使えず、 Control Region BGの一部を補正する必要がある。 その方法として、W→lvのleptonの運動量の一部をmissing energyにすることを考えた。 Best parameterを見つけることができたが、これについてはまだ吟味が必要。

Back up

SUSY mass

Particle	SU1	SU2	SU3	SU4
\tilde{d}_L	764.90	3564.13	636.27	419.84
\tilde{u}_L	760.42	3563.24	631.51	412.25
\tilde{b}_1	697.90	2924.80	575.23	358.49
ĩ ₁	572.96	2131.11	424.12	206.04
\tilde{d}_R	733.53	3576.13	610.69	406.22
ũ _R	735.41	3574.18	611.81	404.92
\tilde{b}_2	722.87	3500.55	610.73	399.18
\tilde{t}_2	749.46	2935.36	650.50	445.00
₹ _L	255.13	3547.50	230.45	231.94
Ũ€	238.31	3546.32	216.96	217.92
$\tilde{\tau}_1$	146.50	3519.62	149.99	200.50
ν _τ	237.56	3532.27	216.29	215.53
₹ _R	154.06	3547.46	155.45	212.88
$\tilde{\tau}_2$	256.98	3533.69	232.17	236.04
ğ	832.33	856.59	717.46	413.37
$\tilde{\chi}_{1}^{0}$	136.98	103.35	117.91	59.84
$\tilde{\chi}_2^0$	263.64	160.37	218.60	113.48
$\tilde{\chi}_3^0$	466.44	179.76	463.99	308.94
$\tilde{\chi}_4^0$	483.30	294.90	480.59	327.76
$\tilde{\chi}_1^+$	262.06	149.42	218.33	113.22
$\tilde{\chi}_2^+$	483.62	286.81	480.16	326.59
h^0	115.81	119.01	114.83	113.98
H^0	515.99	3529.74	512.86	370.47
A^0	512.39	3506.62	511.53	368.18
H^+	521.90	3530.61	518.15	378.90
t	175.00	175.00	175.00	175.00

2jet + missing analysis と 3jet + missing analysisでのsignificanceの違い

Sample1(factor1)	#excess	3jet/2jet	
2jet one lepton	8.0	10 0	
3jet one lepton	98.5	12.3	
2jet no lepton	63.8		
3jet no lepton	282.3	4.4	

Sample2(factor0.7)	#excess	3jet/2jet	
2jet one lepton	5.2	12.0	
3jet one lepton	66.7	12.8	
2jet no lepton	39.1	2.0	
3jet no lepton	154.2	3.9	

Sample3(factor0.5)	#excess	3jet/2jet	
2jet one lepton	3.3	1.4.4	
3jet one lepton	47.6	14.4	
2jet no lepton	23.2	2.5	
3jet no lepton	82.0 13pSA-5	3.5	

Sample4(factor0.3)	#excess	3jet/2jet	
2jet one lepton	1.6	10	
3jet one lepton	28.8	18	
2jet no lepton	14.0	2.2	
3jet no lepton	31.2	2.2	

Sample5(factor0.1)	#excess	3jet/2jet	
2jet one lepton	0.5	24.4	
3jet one lepton	10.7	21.4	
2jet no lepton	1.3	2.0	
3jet no lepton	5.1	3.9	

Sample6(factor0)	#excess	3jet/2jet
2jet one lepton	0	
3jet one lepton	4.1	
2jet no lepton	0	
3jet no lepton	13psA-5	

Mt 法がうまくいかない理由1

Truth情報でのWのMassを確認してみた。

Control Region (Mt > 100)の Wのmassがうまく組めていないことがわかる。

