ATLAS実験におけるUED模型の研究

日本物理学会秋季大会 @甲南大学 2009年9月13日 13pSA-2

<u>岡村淳一</u>、浅井祥仁、寺師弘二^A、 磯部忠昭^A、金谷奈央子^A、小林富雄^A

東京大理、東京大素セム

発表の流れ

☞UEDについて
 ☞サンプル
 ☞One-lepton + ISR Jet 解析
 ☞BGの評価(MT法)
 ☞Same Sign di-lepton + di-Jet 解析
 ☞トリガー
 ☞発見可能性
 ☞まとめ

Universal Extra Dimensions(1)

UED:標準模型の全粒子を高次元に拡張したモデル。 ▶それらの粒子をKK(Kaluza-Klein)粒子と呼び、 量子数やスピンは標準模型粒子のそれと同じである。

▶質量は次式で与えられる

$$m_n^2 = \frac{n^2}{R^2} + m_0^2$$
 (m_0 :標準模型の質量 R:コンパクト化スケール)
(n :励起状態のレベル → 無限個のKKモード)

▶ R⁻¹~TeVなので、縮退した質量スペクトラムとなる

▶KK Party 保存 最も軽いKK粒子(KK Photon)は安定 → ダークマターの候補になる

Universal Extra Dimensions(3)

Framework and Samples : Signal (UED)

► E_{CM}=10TeV

- Generator : Pythia (\rightarrow KK Photon (γ_1) をStableにした)
- ► Full Sim : 1/R=700GeV , ∧R=10
- Fast Sim : (Smearing sample -Atlfast-)
 - 1/R = 400GeV~1TeV (50-100GeV bin)
 ∧R = 1.5~5000 (△M/M=約3%~37%)
 → 44 samples (330K events/sample)

			~	~~~~		2.33974 1184.2 749.8	1.44834 1260.3 799.6	0.907505 1336.2 849.4	×	×
5000		Sample : UFD				434.4 36.7%	460.7 36.6%	486.8 36.4 %		
700	(At	(Atlfast-I) (Pythia 10TeV)			3.59633 1099.2 749.9 349.3 31.8%	2.2608 1170.1 799.8 370.3 31.6%	1.44248 1240.9 849.6 391.3 31.5%	0.933308 1311.6 899.5 412.1 31.4%	0.40153 1452.8 999.2 453.6 31.2%	
200	×	X	sec	×	×	4.75716 1041.4 750.0 291.4 28.0%	3.02737 1108.9 799.9 309.0 27.9%	1.95053 1176.2 849.8 326.4 27.7%	1.27493 1243.4 899.6 343.8 27.7%	×
50	×	Δ	$M \Delta M/M$	×	10.4245 910.13 700.3 209.8 23.1%	×	4.21775 1036.9 800.0 236.9 22.8%	×	1.81342 1163.3 899.8 263.5 22.6%	×
20	×		Full	Sim	12.8955 865.4 700.3 165.1 19.1%	×	5.29836 986.4 800.1 186.3 18.9%	×	2.31293 1107.1 899.9 207.2 18.7%	1.05929 1227.6 999.6 228.0 18.6%
10	426.658 479.1 401. 78.0 16.29	.1 %	120.162 596.4 500.9 95.5 16.0%	40.3201 713.3 600 112.7 15.3	15.2824 .6 830.0 700.4 129.6 15.6%	×	6.3176 946.4 800.1 146.3 15.5%	×	2.78845 1062.7 899.9 162.8 15.3%	1.29251 1178.8 999.7 179.1 15.2%
4	525.385 449.2 400.9 48.3 10.8%	9	149.064 559.9 500.7 59.2 10.6%	50.5252 670.4 600 69.9 10.4	19.3065 5 780.7 700.3 6 80.4 10.3%	×	8.08854 890.8 800.2 90.6 10.2%	×	3.61081 1000.9 900.0 100.9 10.1%	1.69075 1110.8 999.8 111.0 10.0%
2	620.066 425.2 400.5 24.7 5.8%	5	178.141 530.6 500.4 30.2 5.7%	60.7682 636.0 600 35.7 5.6%	23.3773 .3 741.2 700.2 41.0 5.5%	×	9.84908 846.4 800.1 46.3 5.5%	×	4.42906 951.5 899.9 51.6 5.4%	2.09474 1056.6 999.8 56.8 5.4%
1.5	×		191.046 518.0 500.2 17.8 3.4%	65.1164 621.1 600 21.0 3.4%	25.4193 724.2 700.1 24.1 3.3%	×	10.7383 827.2 800.0 27.2 3.3%	×	×	×
	400		500	600	700	750	800	850	900	1000
1/R	[GeV	']	[GeV]	[Ge\	/] [GeV]	[GeV]	[GeV]	[GeV]	[GeV]	[GeV]

Full-Atlfast Comparison

UED(1/R=700, AR=10)を用いた

13pSA-2

Framework and Samples : **BG**

► *E_{CM}* = 10*TeV*

tt : *MC@NLO W* + Jets : APLGEN
Full Sim (Geant4)

→本解析では tt と W+Jets が支配的である

	xsec	number
	[pb]	of events
tt(not Hadronic)	373.6	1.99*10E6
W	39652.3	7.64*10E6

One-Lepton ISR-Jet 解析 (1)

セレクションクライテリア

One-Lepton ISR-Jet 解析 (2)

One - Lepton 解析 (ISR-Jet) の結果

- ▶ Large E_T^{miss}でexcessが見える
- ▶ 軽い:xsec大きい 縮退強:イベント数減少
- ▶ BGの内訳は tt(66%), W+jets(34%)
- ▶比較的BGが多い

BGの評価-MT法- (1)

BGの評価 -MT法-(2)

Same Sign di-lepton解析

セレクションクライテリア

O小さなP_Tの2ジェットとソフトな2レプトン(same sign)を要求

Same Sign di-lepton解析 結果

- ▶ BG(fast)の内訳は tt(84%), W+jets(16%)
- ▶ BGのほとんどが、bクオークのsemi-leptonic decayから来るもの
- ▶この解析方法もまた良い感度を持つ
- ▶ FullSimで解析すべき(進行中)
- ▶ ※ W⁺W⁺もLHCでは生成される

トリガー

lumi1E31 トリガーメニュー

- ►Jet + E_{τ}^{miss}
- ►E_T^{miss} + Lepton
- ►Jet + E_T^{miss} + Lepton
- ►Jet + Lepton
- ► Single Lepton
- ▶di-Lepton (ss解析用)

※詳細はBackUpへ

オフラインにおけるトリガー効率の定義

$$eff_{trigger} = \frac{OffLine}{OffLine}$$

 $\frac{fLineCut \cap TriggerPass}{OffLineCut}$

One-lepton ISR 解析	eff _{trigger}	
Jet + E _T ^{miss}	99.1% ±3.4%	
Lep+X のOR	67.3% ±2.8%	

Same Sign di-lepton 解析	eff _{trigger}	
$Jet + E_T^{miss}$	89.2% ±4.8%	
di-LepのOR	53.7% ±3.8%	
Lep+X,di-LepのOR	89.2% ±4.8%	

※UED(1/R=700, AR=10)を用いた

▶両解析方法とも、 Ler 90%程度またはそれ以上 トリガーにかかる事を確認した。

まとめ

☞UED模型について有効な2つの解析方法を提案し、

その発見能力を検証した。

☞One-lep+ISR解析とSS di-lepton解析、共によい感度を持ち、 <u>10TeV,Lumi=200pb⁻¹においても、広い発見能力がある。</u>

☞M(γ₁)=600GeV,ΔM/M=3%の非常に縮退した場合や

M(γ₁)=850GeV,ΔM/M=30%の重たい場合でも5σ以上で発見が可能。 ☞BGの評価法(M_T法)についても研究を行った。 ☞トリガーを確認した。

今後

☞SS di-lepton解析におけるBGの評価を正しく行なう。

☞全てFullSimで行なう。

☞縮退したSUSYモデルにも応用したい。

バックアップ

Framework and Samples : BG

13pSA-2

tt : *MC@NLO W* + Jets : *APLGEN*

→本解析では tt と W+Jets が支配的

	# of events	xsec [pb]
tt(not Hdronic)	1.99*E6	373.6

	# of events	xsec [pb]
WmunuNp0	1328626	10125.7
WmunuNp1	248220	2155.5
WmunuNp2	749540	682.3
WmunuNp3	223087	202.0
WmunuNp4	58928	55.5
WmunuNp5	17475	16.3

	# of events	xsec [pb]
WenuNp0	1121085	10184.7
WenuNp1	252424	2112.3
WenuNp2	776283	676.0
WenuNp3	179450	203.3
WenuNp4	58872	56.1
WenuNp5	17492	16.6

WtaunuNp0	1326080	10178.3
WtaunuNp1	246827	2106.9
WtaunuNp2	656674	672.8
WtaunuNp3	223162	202.7
WtaunuNp4	58729	55.3
WtaunuNp5	17413	17.0

Full Simulation (1/R=700GeV,ΛR=10) Trigger efficiency !!

単位[%]

	L1	L2	EF	
	Jet +	MET		
j70_xe30	98.6	98.6	98.6	
2j42_xe30	91.5	91.5	91.5	
	MET +	Lepton		
e20_xe15	99.7	34.4	20.7	
e10_xe30	99.7	51.2	35.3	
e15_xe20	99.8	44.8	28.7	
e20_xe30	99.4	34.3	20.7	
mu15_xe15	35.4	23.7	0.42	
mu20_xe30	29.0	14.6	0.32	
Jet + MET + Lepton				
j42_xe30_e15i	50.2	23.8	3.89	
j42_xe30_mu15	35.4	23.7	0.42	

One-lep解析カット後

	L1	L2	EF
	Jet + L	epton	
mu10_j18	40.8	33.3	31.0
4j23_e15i	36.9	17.7	3.36
4j23_mu15	23.1	15.7	14.5
	Single	Lepton	
e10_medium	100	52.2	6.00
e15_medium	99.9	44.8	4.63
e20_loose	99.7	34.4	20.7
mu10	40.8	33.3	31.0
mu15	35.4	23.7	21.8
mu15i_loose	35.4	14.8	14.1
e20i_loose	39.1	17.0	15.5

緑網のメニューで「OR」をとって、どれか引っかかればカウントした。

	L1	L2	EF
OR	100	74.8	64.5±2.6

23

Full Simulation (1/R=700GeV,ΛR=10) Trigger efficiency !!

単位[%]

	L1	L2	EF	
	Jet +	MET		
j70_xe30	84.6	83.9	83.9	
2j42_xe30	88.2	87.8	87.8	
	MET +	Lepton		
e20_xe15	97.7	38.3	28.1	
e10_xe30	99.8	63.5	56.0	
e15_xe20	99.8	53.7	43.5	
e20_xe30	97.5	37.6	27.4	
mu15_xe15	51.2	34.0	4.08	
mu20_xe30	42.0	20.9	2.95	
Jet + MET + Lepton				
j42_xe30_e15i	64.9	39.7	6.80	
j42_xe30_mu15	50.8	33.8	4.08	

	L1	L2	EF					
Jet + Lepton								
mu10_j18	59.9	51.9 50.8						
4j23_e15i	39.2	25.2 3.85						
4j23_mu15	28.8	18.8 17.7						
Single Lepton								
e10_medium	e10_medium 100 65.1 10.2							
e15_medium	99.8	53.7	6.80					
e20_loose	97.7	38.3	28.1					
mu10	59.9	51.9	50.8					
mu15	51.2	34.0	32.2					
mu15i_loose	51.2	24.3	23.4					
e20i_loose	48.1	24.9	22.2					

黄網のメニューで「OR」をとって、どれか引っかかればカウントした。

	L1	L2	EF	
OR	100	89.3	86.2±4.4	

25

	L1	L2	EF			
e + e						
2e10_loose	99.8	20.9	12.5			
2e5_medium	100	30.2	1.36			
mu + mu						
2mu4	24.9	21.3	16.3	2lep オリジナル		
2mu6	20.2	16.3	14.3			
2mu10	17.7	11.8	10.2			
	e +	ти				
e10_mu6	62.1	32.0	24.7			
				1		

青網のメニューで「OR」をとって、どれか引っかかればカウントした。

	L1	L2	EF	
OR	100	61.7	47.6±3.2	

青網と黄網のメニューで「OR」をとって、どれか引っかかればカウントした。

	L1	L2	EF	
OR	100	90.9	86.4±4.4	

26

(1lep解析でmET>300GeV) 200pb⁻¹

Atlfst-UED vs Full-BG

5000	×	×	×	×	10.33 35.03	7.013 23.79	4.667 15.83	×	×
700	×	×	×	×	10.25 34.78	7.264 24.64	5.126 17.39	3.558 12.07	1.768 5.997
200	×	×	×	×	9.324 31.63	6.586 22.34	4.720 16.01	3.381 11.47	×
50	×	×	×	12.30 41.71	×	5.990 20.32	×	2.963 10.05	×
20	×	×	×	12.08 40.97	×	5.672 19.24	×	2.830 9.601	1.420 4.817
10	123.6 419.3	54.80 185.9	23.93 81.18	11.46 38.88	×	5.577 18.92	<u>,</u>	2.752 9.335	1.394 4.730
4	102.7 348.3	36.55 124.0	16.99 57.62	7.942 26.94	X	4.056 13.76	×	2.218 7.523	1.160 3.935
2	70.72 239.9	23.69 80.37	9.115 30.92	3.947 13.39	X	1.852 6.281	×	0.881 2.989	0.477 1.617
1.5	×	20.17 68.43	7.139 24.22	2.693 9.135	×	1.162 3.943	×	~	×
AR 1/R	400 [GeV]	500 [GeV]	600 [GeV]	700 [GeV]	750 [GeV]	800 [GeV]	850 [GeV]	900 [GeV]	1000 [GeV]

Atlfst-UED vs Atlfast-BG

5000	×	×	×	×	2.475 5.795	1.730 4.050	1.241 2.905	×	×
700	×	×	×	×	2.223 5.204	1.606 3.760	1.182 2.767	0.913 2.138	0.481 1.127
200	×	×	×	×	1.934 4.529	1.444 3.380	0.991 2.321	0.778 1.822	×
50	×	×	×	2.775 6.498	×	1.338 3.133	×	0.677 1.584	×
20	×	×	×	2.894 6.777	×	1.378 3.226	×	0.645 1.511	0.338 0.791
10	38.37 89.85	14.53 34.03	5.858 13.71	2.643 6.189	×	1.301 3.047	×	0.660 1.546	0.323 0.757
4	29.89 69.98	9.396 22.00	3.612 8.457	1.895 4.436	×	0.885 2.072	×	0.487 1.139	0.276 0.646
2	20.65 48.36	7.029 16.46	1.714 4.014	0.599 1.403	×	0.305 0.715	×	0.133 0.311	0.085 0.200
1.5	×	3.427 8.023	0.934 2.188	0.410 0.961	×	0.160 0.374	×		×
AR 1/R	400 [GeV]	500 [GeV]	600 [GeV]	700 [GeV]	750 [GeV]	800 [GeV]	850 [GeV]	900 [GeV]	1000 [GeV]

S/VB Significance と signalのcount 10発 5σ 2σ以下 (ss解析でmET>300GeV) 200pt

ISR (Initial State Radiation) とは

▶生成されるカラード粒子の質量に応じて ISR gluonのP_Tも大きくなる。 ▶系統誤差の不定性はある。

BGの評価-MT法-

Universal Extra Dimensions

FIG. 6: The spectrum of the first KK level at (a) tree level and (b) one-loop, for $R^{-1} = 500$ GeV, $\Lambda R = 20, m_h = 120$ GeV, $\overline{m}_H^2 = 0$, and assuming vanishing boundary terms at the cut-off scale Λ .

Universal Extra Dimensions

Radiative Corrections - the degeneracy is lifted

Universal Extra Dimensions

