ATLAS実験のアップグレードに向けた ミューオントリガーのシミュレーション

所属:東大理 高工研^A 神戸大自然^B ハンブルク大^C <u>道前 武</u> 奥山豊信 徳宿克夫^A 長野邦浩^A 石川明正^B 大町千尋^B 岡田勝吾^B 蔵重久弥^B 松下崇^B 早川俊^B 山崎祐司^B 河野能知^C Atlas-Japan HLTグループ

2009年9月10日 日本物理学会 秋季大会

LHCのアップグレード

<u>2018年~ LHCからSLHCへアップグレード</u> ルミノシティ

1×10³⁴[cm⁻²s⁻¹](LHCのデザイン値) → 1×10³⁵[cm⁻²s⁻¹]

<u>Rateの増加</u>

- ・Physics Rateは比例して増加する(10倍になる)
- ・放射線バックグラウンドによるFake Muonの数が増えRateを上げる
 →実データでどうなるかは分からない

2

高いRateを抑えるには ⇒ p_T Resolutionを良くする

今回はL1でどうやったらp_T Resolutionを良くできるかを考える <u>まずはミューオンシステムだけで何とかできないか?</u> ⇒現在あるミューオンシステムを改良してp_T Resolutionを良くすることがで きるかシミュレーションを行う

<u>シミュレーションの方法</u>

Single MuonのMonte Carlo Sampleを使用
バックグラウンドは今回は考えない
L1トリガーではハードウェアでCoincidence Matrix等が現実に使えるか考える必要があるが、今回は測定器の位置分解能をそのまま使えると仮定

Barrel部分に関する アップグレードの検討

Barrel

p_T Resolution

Innerにだけ位置分解能の良い検出器を入れてもp_T Resolutionは良くならない
 ⇒Vertexを仮定した方がまだ良い
 InnerとOuterそれぞれに位置分解能の良い検出器を入れる

 Small Chamber: p_T Resolutionは良くなる (<u>21%(L1)→12% @ 20GeV)</u>
 Large Chamber: p_T Resolutionは良くならない

 新しい検出器を入れてもp_T Resolutionに対する効果はうすい

Inner、Middle、Outerすべての位置分解能を少し良くしてみる

黒: L2 青:L1 赤(実線):I,M,Oの位置分解能~2[mm] 赤(点線):I,M,Oの位置分解能~5[mm]

それぞれに位置分解能が~2mmの検出器を使えばpr Resolutionは大幅に良くなる Large: 24%(L1)→11% @ 20GeV <u>Small: 21%(L1)→6% @ 20GeV</u>

約2倍効く

End-Cap部分に関する アップグレードの検討

End-Cap

アップグレード

放射線のダメージを受けたInnerをすべて変える可能性がある ⇒Innerもトリガーに使えるものに変えてみる

今回はMDTをInnerの位置に入れてL1で使うとどうなるかをシミュレートした

磁場に入る前と出た後の角度を使う

p_{T} Resolution

11

Innerの角度分解能とpr Resolution

まとめ

Barrel部分に関するアップグレード

InnerとOuterに位置分解能の良い検出器を入れてもp_T Resolutionに対す
 る効果はうすい

≻Small: 21%(L1)⇒12%

➤Large: p_T Resolutionは良くならない

•Middleも含めすべてのLayerに位置分解能良いものを使えばResolutionは 大幅に良くなる

>Small: 21%⇒6%
>Large: 24%⇒11% σ=2[mm]のとき

End-cap部分に関するアップグレード

Innerに角度分解能が~1[mrad]の検出器を使うことによって 現在のL1よりp_T Resolutionは良くなる
 (しかし20GeVで10%まで下げるのは難しい)

dslope ExtrWRTMDTA dslope ExtrWRTMDTB dslope ExtrWRTMDTD dslope ExtrWRTMDTE dalama Bulling dslope ExtrWRTMDTC ining Prill 1068 Entrine 15672 140.0 1.7220 4 2001 700F ----..... riida MAR 0.0020 ulia 0.00284 400 enal 700F -100a 1000 1200 500 600 -500F 800 1000 500F 400 400 800 400F 600 300 300 600 300 L 400 200 200 400 200 200 100 100 200 100F -0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.015 -0.01 -0.005 0.005 0.01 0.015 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0 dslope_ExtrWRTVtxA dslope_ExtrWRTVtxE dslope ExtrWRTVtxB dslope ExtrWRTVtxD ee ExMIRIVE dslope_ExtrWRTVtxC ne Edilikiv -Entrino 1088 Fables 1587 -7 4194 ----2.765a-0 180 8,0014 NAS 0.001984 900E FLMB 0.001776 RMB 0,001372 1000 1800 1400 160 800F 1600 140 1200 800 700 F 1400 120 1000 600 F 1200 100 600 500F 800 1000F 80 400F 800F 400 600 60 F 300 F 600 400 40 200F 400 200 200 100 E 20 200 ٥

-0.015 -0.01 -0.005

0.005 0.01 0.015

0

-0.015

-0.01 -0.005

0.005

0

0.01 0.015

-0.015 -0.01 -0.005

0.005

0

0.01 0.015

-0.015 -0.01

-0.005

0.005

0

0.01 0.015

-0.015

-0.01 -0.005

0.005

0

0.01 0.015

16

parameter	symbol	nominal	ultimate	LS	FCC	L	
transverse emittance	ε [μm]	3.75	3.75	3.75	3.75	1.0	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25	25	25	25	50
beam current	I [A]	0.58	0.86	0.86	0.86	086	1.22
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	7.55	7.55	7.55	11.8
beta* at IP1&5	β* [m]	0.55	0.5	0.08	0.08	0.1	0.25
full crossing angle	θ _c [µrad]	285	315	0	0	311	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	0	0	3.2	2.0
geometric reduction		1.0	1.0	0.86	0.86	0.30	0.99
peak luminosity	$L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	1	2.3	15.5	15.5	16.3	10.7
peak events per #ing		19	44	294	294	309	403
initial lumi lifetime	$\tau_{\rm L}$ [h]	22	14	2.2	2.2	2.0	4.5
effective luminosity (T _{turnaround} =10 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	2.4	2.4	2.5	2.5
	T _{run,opt} [h]	21.2	17.0	6.6	6.6	6.4	9.5
effective luminosity (T _{turnaround} =5 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	3.6	3.6	3.7	3.5
	T _{run,opt} [h]	15.0	12.0	4.6	4.6	4.5	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.1 (0.4)	1.04(0.6)	1.0 (0.6)	1.0 (0.6)	1.0 (0.6)	0.4 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.25	0.25	0.25	0.36
image current heat	P_{IC} [W/m]	0.15	0.33	0.33	0.33	0.33	0.78
gas-s. 100 h (10 h) τ_b	P _{gas} [W/m]	0.04 (0.4)	0.06 (0.6)	0.06 (0.56)	0.06 (0.56)	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	4.5	4.3	3.7	3.7	1.5	5.3
comment		nominal	ultimate	D0 + crab	crab		wire comp.