ATLAS実験におけるGMSBモデルの 長寿命超対称性粒子の探索に関する研究

2009年3月30日(月) 日本物理学会 第64回年次大会 (@立教大学)

神戸大学大学院 理学研究科 物理学専攻 <u>岡田勝吾</u>,山崎祐司,藏重久弥,松下崇,川越清以

- 1. Introduction
- 2. 長寿命超対称性粒子の速度・質量の再構成
- 3. SingleMuonサンプルを用いたバックグラウンドの概算
- 4. まとめ

長寿命超対称性粒子について

- ✓ Gauge Mediation SUSY-Breaking (GMSB) モデルによると、スレプトンがATLASの ミューオン検出器を抜けるまで崩壊せず、「重いミューオン」の様に振る舞う可能性がある.
- ✓ミューオン検出器で測定した粒子の運動量Pと速度βから質量mを計算し、質量から長寿命 スレプトンを探す手法の研究を行っている。

$$m = P/\beta\gamma$$
 $(\beta = v/c, \ \gamma = 1/\sqrt{1-\beta^2})$

--> 質量がO(100GeV)であれば標準模型では存在し得ない新粒子(長寿命超対称性粒子).

問題点

✔ 長寿命スレプトンは質量が大きく遅い(β<1).

√β=1を仮定したMDTのdrift circleで,スレプトンの飛跡を フィットしようとしても上手く行かず、運動量が決まらない、

--> スレプトンの飛跡を再構成する際. βをfree parameterとして飛跡のフィットを行い, 最適なβの値を決める.

Reference: 野本裕史氏 他 (2007年物理学会@北大 21aZE6)

長寿命超対称性粒子探索で必要なミューオン検出器

TGC (Thin Gap Chamber) RPC (Resitive Plate Chamber)

- ミューオントリガー用検出器.
- --> 粒子の通過した位置のφ座標がわかる.
- LHCのBunch Crossing (BC) の時間間隔は25nsec --> β>0.5の長寿命粒子は同じBCでトリガーされる.

MDT (Monitored Drift Tube)

ミューオン検出器内の粒子の位置(R,Z)の精密測定.

★ t: Tubeからの電気信号の測定時刻. ★ t0: ミューオンが衝突点からTubeに到達する時刻. (-->βの関数) --> drift time = t - t0 --> drift radiusが決まる.

各検出器で測定した(R,φ,Z)は粒子の飛跡の再構成で使う.

- (1) βの値を変えて (β=0.50~0.99までの間を
 0.01のステップで) 粒子の飛跡を再構成し,
 各βでの飛跡のχ2を計算する.
- (2) χ2をプロットし、二次関数でフィットして 最小値を取る時のβの値を、その粒子のβとする.
- (3) βと運動量から粒子の質量を計算する.

$$m = P/\beta\gamma$$

--> 上記の方法で粒子の速度・質量を再構成するため, Event Filter (LVL3 Trigger) 用のツールで ミューオン検出器内の飛跡を再構成するアルゴリズム (TrigMuonEF) を改良した.

Beta Reconstruction Algorithm with TrigMuonEF

TrigMuonEFによる飛跡の再構成の流れ

(1) Segment Finderにより、飛跡のヒット情報を元に、各ミューオン検出器の 各station内でパターン認識 (pattern recognition) を行い、各station毎で segmentを作る.

Beta Reconstruction Algorithm with TrigMuonEF

TrigMuonEFによる飛跡の再構成の流れ

(2) Track Builderでsegmentをseedとして, station間でパターン認識を行い, ミューオン検出器内のミューオン/スレプトンの飛跡を再構成する.

95

ueBeta

1

✓ Beta Reconstruction Efficiencyは、パターン認識を行ったものの方が、広いβ領域において 70~90%と高い。

★ パターン認識をする場合:

beta	0.50~0.60	0.60~0.65	0.65~0.70	0.70~0.75	0.75~0.80	0.80~0.85	0.85~0.90
mean	94.2GeV	96.1GeV	96.5GeV	97.7GeV	98.2GeV	98.2GeV	97.1GeV
sigma	3.8GeV	4.2GeV	5.0GeV	6.2GeV	6.2GeV	8.4GeV	10.2GeV
★ 飛跡をrefitする場合:							
beta	0.50~0.60	0.60~0.65	0.65~0.70	0.70~0.75	0.75~0.80	0.80~0.85	0.85~0.90
mean	92.9GeV	96.0GeV	95.6GeV	96.8GeV	97.4GeV	97.9GeV	96.8GeV
sigma	5.9GeV	6.6GeV	7.0GeV	7.6GeV	7.1GeV	8.8GeV	10.1GeV

SingleMuonを用いたBackgroundの量の概算

第一近似として、Pt=6,10,30,50,100,150,200[GeV]のSingleMuonを用いて、スレプトン探索でのBackgroundの量を、SingleMuonを出す物理過程の断面積に焼き直して概算した。

single muonを出す物理事象の微分断面積[nb/GeV] reconstructed Beta分布 differential cross-section [nb/GeV] pi/K of Entries Pt=6GeV 10⁵ 0³ Pt=10GeV bottom 10⁴ Pt=30GeV charm 10³ Pt=50GeV 10² top **#** 10² Pt=100GeV 10 W Pt=150GeV 1 total Pt=200GeV 10⁻¹ 10⁻² 10 10⁻³ **10**⁻⁴ ۱**0⁻⁵** 250 50 150 200 100 0.55 0.5 0.6 0.65 0.7 0.75 0.8 0 85 09 0.95 Pt [GeV] reconstructed Beta

Pt 6 GeV 10 GeV 30 GeV 50 GeV 生成断面積 2.64x10⁵ nb 23.2 nb 2.32 nb 4.83x10⁻²nb 100 GeV 150 GeV 200 GeV 4.72x10⁻³ nb 5.77x10⁻⁴ nb 1.59x10⁻⁴ nb

(飛跡をrefitする場合での結果)

Summary & Outlook

- ✓ ATLAS実験のEvent Filter用のツール (TrigMuonEF) をベースに長寿命スレプトンの速度βを 再構成するプログラムを作った.βは正しく,高いefficiencyで再構成できた.
- ✓しかし、Triggerとしてこのプログラムを使うには時間が掛かりすぎるので、 パターン認識を省くアルゴリズムを作成したところ、処理速度は8~9倍速くなった。
- ✓ だが、スレプトンの質量の分解能が悪くなり、また、low βのスレプトンに対する、 β reconstruction efficiencyが低くなった.

--> efficiencyの向上と更なる処理時間短縮のための改良をする必要がある。

✓第一近似として、SingleMuonサンプルを用いたBackgroundの量を概算したところ、 スレプトンによるシグナルの方が多く、ミューオンバックグラウンドによる影響は少ない。

--> 今後, ttbar, W, Zの標準模型事象を用いて精度良く確かめる.

Backup Slides

- ・ 例えば, Barrel部でmuon/sleptonがθ=60°の方向 に進んだとき、飛跡と粒子が通ったMDTの関係は (団子や焼き鳥の様な)「串刺し」みたいになる.
- ・この場合、粒子の通った全てのMDTのドリフト半径 (アノードと飛跡の間の距離)は同じ.

educed

・また、この様な場合では、βが変化しても上手く (小さいx2で) 飛跡がフィットできるので, (→串刺し状態では無い場合と大きく違う点) χ2の値に大きな違いが見られない(右下図).

・結果として、βを間違えることがある.

,串刺しずない場合は,βを間違えると 飛跡のフィットが一気に悪くなる.

