ATLAS実験初期における 損失エネルギー・ジェットの測定 能力の理解とその改善

山本 真平 (ICEPP, Univ. of Tokyo)

JPS meeting—Mar. 30, 2009

Outline (we focus on missET today...)

- 1) Introduction
- 2) W's transverse mass
- 3) Determination of missET performance with W events
- 4) Results with 30-1pb data

Introduction

Jets/missET appear in most of physics processes at LHC: neutrinos in ttbar and Higgs production, LSP's in SUSY cascade decays...

- ✓ Jet energy scale could be a dominant systematic uncertainty at measurements (Tevatron experiences)
- ✓ MissET is more complicated object...(observed as an imbalance of energy against visible objects in an event)

Both are calorimeter based objects and <u>understanding calorimeter</u> <u>performances and calibration are crucial</u>. (Especially for early SUSY searches, we should validate missET reconstruction, whether our baseline performances are achieved or not..)

We here propose a method for in-situ missET resolution determination using W decays and perform a feasibility study

W's transverse mass

Use W $\rightarrow \mu \nu$ events

- Promising performances for muon reconstruction
- Less fake rate compared to electrons.
- Enough signal yield at the early stage: $\sigma xBr \sim 10nb$ (sqrt(s)=10TeV, $p_T^{muon} > 15GeV/c$)

For W's decaying into leptons, the shape of transverse mass (MT) distribution is sensitive

to missET resolution/scale:

Comparing with MC incorporating various resolution parameters, we can evaluate missET reconstruction performances.

$$m_T = 2p_T^l E_T^{miss} (1 - \cos \Delta \phi)$$

 p_T^I : transverse momentum of lepton E_T^{miss} : transverse missing energy $\Delta \varphi$: φ angular difference between lepton and missET vector

$W\rightarrow \mu\nu$ candidates and MT

Selection cuts

- Fire single muon trigger (p_T>15GeV/c)
- One isolated muon with p_T > 20GeV/c
- 3. No tight electron above 20GeV/c
- 4. missET>20GeV (suppress QCD)
- Signal purity ~84%
- Shape of W's MT is smeared due to the contamination of backgrounds ($W \rightarrow \tau \nu$, $W \rightarrow \mu \nu$, QCD b-jets, ttbar, $Z \rightarrow \tau \tau$).
- To extract missET reconstruction performances correctly, we need to know these contamination effects simultaneously.

process	#events
W→μν	122498
$W \rightarrow_{\tau V}$	13169
Z→μμ (one μ lost)	5748
QCD (heavy flavor decays)	2940
ttbar (w in decays)	725
Ζ→ττ	405

General description of missET performance

missET (p_T of neutrinos) is measured as the energy imbalance with "calorimeter activities (hadronic recoils) + muons"

- The resolutions are mainly described as the stochastic effect of visible calorimeter energy sum. (α xsumET^{1/2})
- The scale shift is caused by
 - Difference between true hadronic energy sum(sumET_{truth}) and visible one.
 - Muons also affect the scale when undetected.
- Thus missEx resolution described as $\sigma(E_x^{miss}) = \alpha \cdot \Sigma E_T^{calo} \oplus \sigma(\mu \text{ inefficiency})$
- To confirm our baseline performance of α =0.52 (according to Geant4 full simulation), we need to check MT in each sumET slice. But MC sumET is uncertain. (instrumental effects, fragmentation/underlying event models alter sumET predictions)

Fit α and sumET scale β simultaneously with "MT-sumEt" 2-D distributions

missET-sumET 2-D distribution

- Looking into 2D-distribution of "MT-sumEt", we can separate BG's.
 - QCD events cluster in the region of large SumEt after selection cuts and show small MT. (due to small $\Delta \phi$ for heavy flavor decays)
 - ttbar's also have large SumEt (emit multiple jets), but W's in ttbar gives higher MT.
 - Remaining W/Z backgrounds cannot be separated,
 but their fractions to signal are determined by MC with small uncertainties.
 - given only by branching fractions and muon ID eff.

Analysis overview

Signal/BG MC templates PDF(sumET,MT; α , β)

— Muon ID efficiencies (currently based on MC)

MT-sumEt distribution of W→µv candidates

Fit MC templates to data using the maximum likelihood method (shape only) with 4 free parameters:

- coefficient of stochastic term "α"
- sumET scale "β"
- 2 background fractions of QCD and ttbar

(SumEt shows non-linear response for small calo. activity events due to noise, then the fitting range of SumEt is set to be >100GeV.)

Preparation of PDF's

Result (30 pb⁻¹)

- $\sigma_{\text{Exmiss}} = 0.536 \times \text{SumEt}_{\text{rec}}^{1/2} \oplus \sigma_{\text{muon}}$ = $0.536 \times (0.896 \times \text{SumEt}_{\text{truth}})^{1/2} \oplus \sigma_{\text{muon}}$ Consistent with the performances G4 sim. says. (α ~0.52)
- Almost no correlation between α and β , as expected.
- missEx resolution can be determined with an accuracy of <1% using a few 10 pb⁻¹ data.

MT/missET resolution of W $\rightarrow \mu \nu$

missET reconstruction performances can be extracted correctly.

Concerning systematics

- Muon p_T resolution, ID efficiencies
 - Muon p_T resolution could be quite better than calorimeter objects and small effect on missET resolution
 - ID efficiency just alters the fraction of BG, so we can obtain stable fitting results. (if we keep high: $W \rightarrow \mu \nu$ signal purity)

• p_T of recoil W alters the MT shape and could be a dominant systematic uncertainty of MT-sumET templates, but can be reduced by using measured Z's p_T ($Z \rightarrow \mu\mu$)

Summary

- We performed a practical analysis using W decays to give general descriptions of missET performances.
 - Maximum likelihood fit with "MT-SumEt" 2-D distributions
- We examined the feasibility including possible background processes, and showed it works as expected.
- The fitting gives correct answers for missET performances; consistent with G₄ full simulation says (baseline performance).
 - $\sigma_{\text{MEX/Y}} = 0.536 \times \text{sumET(rec)}^{1/2} \oplus \sigma_{\text{muon ineff}}$
 - Can achieve an accuracy of <1% using a few 10 pb⁻¹ data

backup

Object definition

Muon:

- Staco combined
- |eta| < 2.5
- Isolation requirement of EtCone($\Delta R=0.2$)<10GeV

Electron:

- Tight ID
- |eta| < 2.5
- EtCone(Δ R=0.2)<10GeV

Etmiss/SumEt:

RefinedMETFinal algorithm

Muon ID efficiency

ID requirement:

- Staco combined muon
- $p_T > 20GeV/c$

• |eta| < 2.5

trigger eff. included

Fitting procedure

maximum likelihood fit using 2D binned data of "MT-SumEt"

- 4 free parameters
 - Exmiss resolution parameter (α), visible Etsum scale (β) and two BG fractions of QCD (f_{QCD}) and ttbar (f_{top})
- Signal and background PDF's for parameters α and β
- Convolute PDF's
 - $\Sigma f_i \times PDF_i(\alpha, \beta)$; $i=W \rightarrow \mu \nu, W \rightarrow \tau \nu, Z \rightarrow \mu \mu, Z \rightarrow \tau \tau, Top, QCD$
 - $\sum f_i = 1$
 - $f_{W \to \tau \nu}/f_{W \to \mu \nu}$, $f_Z/f_{W \to \mu \nu}$: constant
- Fit PDF to data (using shape only) by Minuit
 - Fitting region: SumEt > 100 GeV, MT>0

Preparation of PDF's

- 1. Generate a signal/BG MC event and suppose a certain set of resolution α and scale β .
- 2. Smear truth Ex(y)miss with a given resolution in Gaussian regime.
 - Resolution = α (β × EtSumTruth)^{1/2} (Truth Ex(y)miss is calculated by all interacting particles other than muons, with | eta<5|)
- 3. Reduce muons according to the ID efficiencies $\epsilon(p_T, eta)$ and set Ex(y)miss:
 - Exmiss = (smeared truth Exmiss) Σ random_binary(ϵ) × p_x^{μ}
 - $\epsilon(p_T, eta)$ is based on fullsim data for the moment
- 4. Apply the selection cuts on the event. If passed, we fill it in "MT-SumEt" histogram.
 - SumEt = β × EtSumTruth
- Repeat the toy event generation described above and make "MT-SumEt" histograms for various parameters.