

ATLAS前後方ミューオントリガー検出器用オンラインシステム

Takashi Matsushita

Kobe University

matsushita@phys.sci.kobe-u.ac.jp

松下崇 蔵重久弥 早川俊 中塚洋輝 佐々木修^A 池野正弘^A 鈴木友^A 安芳次^A 川本辰男^B 石野雅也^B 織田勧^B 久保田隆至^B 平山翔^B 金賀史彦^B 結東晃平^B 戸本誠^C 杉本拓也^C 高橋悠太^C 奥村恭幸^C 長谷川慧^C 菅谷頼仁^D 福永力^E 神戸大学 KEK ^A ICEPP ^B 名古屋大学^C 大阪大学^D 首都大学^E

LHC/ATLAS

- Explores physics at TeV energy region
- Large Hadron Collider (LHC)
 - proton-proton collisions at 14 TeV
 - circumference = 27 km
 - design luminosity = 10^{34} cm⁻²s⁻¹
 - bunch crossing every 25 ns
- ATLAS
 - observes 1 GHz *p-p* interaction
 - general purpose detector
 - width x diameter = 44 x 22 [m]
 - Tracking $|\eta| < 2.5$ in 2 T solenoid
 - $\sigma/p_T \sim 5 x 10^{-4} p_T \oplus 0.01$
 - Calorimetry |η| < 4.9
 - Electro magnetic $\sim 10\%/\sqrt{E}$
 - Hadronic ~ 50%/ $\sqrt{E} \oplus 0.03$ (10 λ)

LHC started operation on 10/09/2008

Man made events observed at both CMS/ATLAS

ATLAS trigger system – overview

- Reduce event rate from 40 MHz to recordable rate
 - 300 MB/s , event size ~1.5 MB \rightarrow 200Hz
- Three level trigger with region-of-interest (ROI) based 2nd level trigger
- Level1 trigger custom built hardware based
 - coarse glanurality
 - calorimeter
 - muon
 - Trigger decision in ~ 100 bunch crossings [2.5 μs]
- Region of interest builder
- High level trigger software based
 - 2nd level trigger with partial event data ~^{3.5}
 - Trigger decision in ~ 40 msec
 - 3rd level trigger with full event data
 - Trigger decision in ~ 4 sec

ATLAS read-out system – overview

- Detector
 - front-end electronics with pipeline memories to cope with ${\sim}2.5~\mu\text{s}$ trigger latency
 - read-out drivers
- PC farms
 - read-out system
 - custom built buffers in PC farm
 - event building
 - more PC farm on data network
- DAQ software
 - control, configuration, monitoring on control network

ATLAS Trigger & DAQ framework

- ATLAS provides framework for developing online software dedicated to each detector component
- As the system is large and complex, it is of paramount importance to have mechanism for early detection of problem, quick diagnosis and fixing the problem
 - Network based message logging system important information for system operation passed to central system operator, categorised in warning, error, fatal etc.
 - File based message logging system [per process] detailed running record of each component for investigation of problems
- Xml based database for system configuration
- Monitoring
- State machine
- VME access driver and library for supported hardware/OS

ATLAS Trigger & DAQ control

- Detector specific software is integrated and controlled by GUI application
- Hierarchy of run controller handles all the components in a run
 - Each detector component also has multi layer structure, configurable with xml based database

ATLAS TDAQ state machine

- State machine to synchronise activity of each detector
- ATLAS State machine as seen by an operator
 - Boot initialise run controller tree
 - Configure start application for control/readout, set-up registers, download FPGA firmware etc.
 - Start release BUSY and be ready for trigger
- Typical transition time for recent runs
 - ~ 10 min.

ATLAS TDAQ recent status

- Some numbers from a recent run;
 - number of computer nodes used for Trigger & DAQ (TDAQ) system: ~ 1600
 - Xml configuration database size: ~ 40 MB
 - Average event size: ~ 3 MB
 - Throughput to disk: ~ 350 MB/s
 - Trigger rate: O(100) with cosmic trigger, 20kHz random L1 trigger

Partition ATLAS

Run State	RU	NNING	Error State		No error	TIA	16000	A	T4 6!	IMD	2 16720	
Run Type	phys	physics 89335		ı Tag	data08_cos 00:05:40		cepts 16090	Average Event Size Recorded Events		e [MB]	3.10/38	
Run Numb	er 893			ı Time		L2 Ac	cepts 16090				14851	
Luminosity	Value 2	Ch		nges every	1000 SECON	IDS EF Ac	cepts 14834	Throu	ghput to Disk [MB/s		s] 356.325	
Busy Monit	oring											
CTPMI		СТРСО	RE		CTPOUT 12		CTPOUT 13		CTPOUT 14		CTPOUT 15	
VME	0%	Backpla	ne	0.624699%	TTC2LAN	0%	BCM	0%	LHCf	OUT	CSC	OUT
ECR	0%	Result		0.624699%	Pixel	0.419204%	LAr H/F-C	OUT	MDT B	0%	TGC-C	0%
Veto0	0.202101%	ó			SCT	0%	LAr H/F-A	0%	MDT EC	0%	TGC-A	0%
Vetol	0%				TRT	0%	LAr EMEC	0%	Tile EB	0%	RPC	0%
Backplano	0 6217440				LIC-L	00/	LA. EMD	00/	TI. ID	00/	MUCTO	0.04

ATLAS TDAQ system ready for data taking

ATLAS TGC

- Provides muon trigger tagged with p_T information
 - p_T estimated with curvature in magnetic field
- Custom built trigger and read-out electronics, ~ 300k channels
- One read-out and trigger unit is a sector; 1/12 in phi
 - timing/coincidence/read-out ASICs ~ 5000 registers via JTAG (max 160 bits)
 - 6 FPGAs for trigger
 - one read-out driver
- ROD: Israel
- Others [Front-End]: Japan

ATLAS TGC Front-End system – I

- As of last October
 - Hardware had been designed, implemented, tested and being installed
 - On the other hand, software had been just implemented
 - Took ~ 10 min to set-up one sector
 - Frequent failure on register setting with JTAG ~ 1 error per sector
 - \rightarrow unreliable, inefficient
- Urgent need to implement software that works correctly, reliably and efficiently before start of data taking
- Strategy
 - Use ATLAS TDAQ framework as much as possible
 - cost of software maintenance is much higher than developing; never re-invent the wheel
 - Make software system as simple as possible for maintenance
 - Implement error check at every step to prevent operation in faulty state
 - Produce a lot of useful logging messages for easy debugging/diagnosis

ATLAS TGC Front-End system – II

- Reliable configuration of timing/coincidence/readout ASIC with JTAG critical ~ 5000 registers per sector
- JTAG access is not so simple
 - Control software needs to handle VME → CCI/HSC boards (VME) → JTAG chain to read/write a register
- Resource handling is critical
 - use semaphore for exclusive access
- Data integrity check is critical
 - use the simplest way; write to register then read it back, repeat until we get consistent read back value
- After renovation of the software
 - Reliable register setting ~ negligible error rate
 - Takes ~ 2 min to set-up the whole system

ATLAS TGC ROD

- TGC uses 24 read-out drivers (ROD); one ROD per sector [13k channels]
- Input
 - 12 optical fibres for data input
 - one optical fibre for trigger
- Output
 - one optical fibre for ATLAS readout system
- ROD functionality
 - merges and checks input data
 - decodes and formats the data
 - verifies data integrity
 - sends the data to read-out system
 - generate BUSY if necessary
 - samples data for online monitoring and recording

Note: 1 of the 3 RODs per quadrant reads an Inner Small Wheel quadrant

ATLAS TGC recent status

- TGC Trigger and DAQ system working
 - Trigger
 - providing stable trigger with cosmic ~50 Hz
 - observed changes of trigger rate coincide with LHC beam injection
 - Read-out
 - current limit on read-out rate is ~25 kHz
 - observed halo-muon event successfully

Summary

- ATLAS uses three level trigger system
 - 1st custom built hardware based trigger: 40 MHz \rightarrow 75 (100) kHz
 - 2^{nd} software trigger with region-of-interest information: \rightarrow 3.5 kHz
 - 3^{rd} software trigger with event reconstruction \rightarrow 200 Hz
- ATLAS DAQ system
 - detector specific part custom built hardware
 - other part uses commodity PC farm on gigabit ethernet
 - stores events at a rate of ~300MB/s
- ATLAS Trigger and DAQ system is ready for data taking
- ATLAS TGC Trigger and DAQ system working as well;
 - reliable configuration of system ~ 130k registers in 2 minutes
 - reliable read-out system ~ 300k channels at ~ 25 kHz
- Awaits for collision data
 - To move on to calibration and physics analysis