ATLAS 実験に於ける VBF Higgs 粒子の探索

津野 総司(高エネ研)、浅井 祥二(東大理)、 田中 純一(東大素セ)、山本 真平(東大素セ) ATLAS Collaboration

Physics strategy 最初の2,3年で、Higgs粒子、SUSY粒子発見。

シンポジウム講演参照。 (近藤氏、ZimmermannFrank氏)

- 2008(summer)/09: first 10/14 TeV physics run, initial L ~10³¹cm⁻²s⁻¹, L_{int} ~ 1fb⁻¹ Detector commissioning : alignment, in-situ calibration / trigger menu First SM measurements : W/Z/top & min.bias/jets & PDF ~100pb⁻¹
- 2009/10 : low luminosity run, instantaneous L ~2x10³³cm⁻²s⁻¹, L_{int} ~ 10fb⁻¹
 First B rare decay searches,
 First searches : high mass DY(Z'), ADD, BH, SUSY ~1fb⁻¹
 First Higgs discovery : H->4leptons, WW, γγ & MSSM Higgs
- **2010/11** : low luminosity run, inst.L ~2x10³³cm⁻²s⁻¹, L_{int} ~ 10fb⁻¹/yr Light Higgs searches, SUSY measurements (model specific), ...
- **2012~** : high luminosity run, inst.L ~2x10³⁴cm⁻²s⁻¹, L ~ 100fb⁻¹/yr many, many ... toward SLHC...

ATLAS detector Tevatronにはない広い η の範囲をカバー。

Muon Detectors

シンポジウム講演参照。 (佐々木氏、海野氏、石野氏)

- Muon standalone tracking
- Inner tracker coverage $|\eta|^{2.7}$
- Calorimeter coverage $|\eta|^{\sim}5.0$

channels (examples)	events to tape for 100pb ⁻¹ @ LHC	total stat. @ Tevatron
$W \rightarrow \mu \nu$	$\sim 10^{6}$	$\sim 10^{6} - 10^{7}$
$Z \rightarrow \mu \mu$	$\sim 10^5$	$\sim 10^{5} - 10^{6}$
$t\bar{t} \rightarrow \mu \nu$ +X	~10 ⁵	$\sim 10^{3} - 10^{4}$

Illustrative trigger menu at $\mathcal{L}=10^{31} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ (ATLAS):					
Signature	Signature Examples of physics coverage				
minimum bias	Prescaled trigger item		10		
e10,2e5	b,c→e,W,Z,Drell-Yan,tt,J/ ψ , Υ	electrons	~27		
γ20,2γ15	Direct photon, photon pairs, γ -jet balance	photons	~7		
μ10,2μ4	b,₩,Ζ,Drell-Yan,tt,J/ψ,Υ	muons	~22		
j120,4j23	QCD, high p_T and multi-jet final states	jets	~13		
$ au_{\mu 6}^{ au 20i+e^{10}}$	$Z \rightarrow \tau \tau$	taus	4		
τ 20i+xE30	τ 20i+xE30 W,tt		~10		
	Prescaled, calibration, monitoring triggers		~17		
	~ 100				

	Performance @ Start-up		Physics goals	Physics signals tools	
EM energy uniformity	<2%(ATLAS) <4%(CMS)	0.7%(ATLAS) 0.5%(CMS)	$H \rightarrow \gamma \gamma$	isolated e, Z $ ightarrow$ ee, ϕ -symmetry	
Electron energy scale	$\sim 2\%$	0.02%	W mass	Z→ee	
Inner detector alignment	50-100 µm(ATLAS)	<10µm	b-tagging	isolated μ ,Z \rightarrow μ μ ,generic tracks	
Muon system alignment	<200µm(ATLAS)	30 µ m	$Z' \rightarrow \mu \mu$	$Z \rightarrow \mu \mu$	
Muon momentum scale	~1%	0.02%	W mass	$Z \rightarrow \mu \mu$	

Tile Calorimeter

Martch.26th.2008

JPS spring 2008 S. Tsuno

Computer System Commissioning (ATLAS CSC2008) 本実験と同じComputing Systemで解析。

JPS spring 2008 S. Tsuno

Acceptance

Unit fb

	Sign	M = 120GeV			U	nit fb
		$Z \rightarrow \tau^+ \tau^- + \text{jets}(\geq 1)$		tt		
	Mass (GeV)	120	QCD	ELWK	Full	Fast
	Cross section (fb)	309.1 (100%)	172.5×10^{3}	1693	833×1	10^{3}
	Trigger	57.2(1) ($18.5%$)	$52.7(1) \times 10^3$	230(1)	-209.8(2)	$\times 10^3$
Detector oriented	Trigger lepton	49.5(1) (86.5%)	$43.7(1) \times 10^3$	190(1)	-179.1(2)	$\times 10^3$
Detector oriented	Di-lepton veto	43.4(1) (87.9%)	$39.3(1) \times 10^3$	171(1)	-156.4(2)	$\times 10^3$
selection	Hadronic τ	8.02(7) (18.4%)	3137(-43)	19.3(4)	5224(56)
	Missing $E_T \ge 30$ GeV	4.96(5) (61.9%)	871(20)	12.1(3)	4251(50)
	Collinear Approx.	3.34(5) (67.4%)	526(15)	7.8(2)	606(19)
	Transverse mass	2.46(4) (73.6%)	↓425(-14)	6.5(2)	176(10)	Atlfast
	N jets ≥ 2 4	2.02(4) (82.3%)	241(7)	6.0(2)	162(9)	166(1)
Kinematics oriented	Forward jet	1.52(3) ($75.1%$)	41(-3)	-2.3(1)	-32(4)	25.7(4)
selection	Jet kinematics	0.82(2) (53.9%)	2.8(1)	0.72(6)	$2.2(2)^{*}$	3.0(1)
	Central jet veto	0.72(2) (87.5%)	1.2(1)	0.49(5)	$0.32(7)^{*}$	0.27(4)
	Mass window	0.61(2) (85.2%)	0.11(2)	0.04(1)	≤ 0.04	0.03(1)

Irreducible background : Zττ+jets Remarks : Reducible background : ttbar/W+jets etc. (ttbar is complicated object.) (5% ll-mode, 45% real-tau mode, 50% l+jets mode)

Kinematics-oriented selection : factor ~4 for signal , ~400 for backgrounds.

Overall rejection ~10⁷⁻⁸ rejection for reducible backgrounds.

Background estimation (I) real dataを使って、バックグラウンドを評価。

Shape and acceptance estimation by DATA.

- 1) Replace muon to tau.
- 2) Re-run TAUOLA.
- 3) Re-simulation again.
- Missing Et is modeled by DATA.
 - Important for tail structure.
- Acceptance is also handled correctly.

Background estimation (II) real dataを使って、パックグラウンドを評価。

Overall QCD fake estimation

Track multiplicity fit:

- count the track outside tau core region.
- fit the n-tracks by likelihood.

 $(\times Gaus(n_{exp}^{tot}r_{lep}, N_{lep}^{measured}))$

$$L = \prod_{i}^{N} Pois(n_{exp}^{tot} \times (r_{tau}f_{tau}^{i} + r_{lep}f_{lep}^{i} + (1 - r_{tau} - r_{lep})f_{jet}^{i}), N_{obs}^{i})$$

 $\times Gaus(n_{exp}^{tot}, N_{obs}^{tot})$

shape (pdf) are modeled by real-data.
 (ex. QCD jet shape by JET triggered data)

Signal sensitivity LLR(mass fit)によるsignificance。

Background shape systematics :

- Z+jets : 10%
- QCD (ttbar/W+jets) : 50%

Simultaneous fit

Signal Region

(S:21 evts,

B:70 evts

at 30 fb⁻¹)

unbined

Control Region

(bkg. domain,

12,000 evts

at 30 fb⁻¹)

Large stat.

Systematic uncertainty

Dominant source of systematics:

- Jet Energy Scale (20%)
- Central Jet Veto (Theory) (30%)

Source	Relative uncertainty	Effect on signal efficiency
luminosity	±3%	± 3%
muon energy scale	\pm 1%	\pm 1%
muon energy resolution	$\sigma(p_T) \oplus 0.011 p_T \oplus 1.7 \ 10^{-4} p_T^2$	$\pm 0.5\%$
muon ID efficiency	± 1 %	$\pm 2\%$
electron energy scale	$\pm 0.5\%$	± 0.4 %
electron energy resolution	$\sigma(E_T)\oplus 7.3 \ 10^{-3}E_T$	± 0.3 %
electron ID efficiency	$\pm 0.2\%$	$\pm 0.4\%$
tau energy scale	± 5%	\pm %
tau energy resolution	$\sigma(E_T) \oplus 0.45 \sqrt{E_T}$	±
tau ID efficiency	± 5%	± 5%
	\pm 7% ($ \eta $ < 3.2)	
jet energy scale [†]	\pm 15% ($ \eta $ < 3.2)	$^{+16\%}/_{-20\%}$
	\pm 5% (on $\not\!\!E_T$)	
jet energy resolution	$\sigma(E_T) \oplus 0.45 \sqrt{E_T} (\eta < 3.2)$	
	$\sigma(E_T) \oplus 0.67 \sqrt{E_T} (\eta > 3.2)$	$\pm 1\%$
b-tagging efficiency	± 5%	\pm 5%
forward tagging efficiency	±14 %	$\pm 2\%$
central jet veto efficiency	±11 %	$\pm 2\%$
total summed in quadrature		±18%

	Source	Relative uncertainty	Effect on signal efficiency
	PDF uncertanties	±3.5%	±3.5%
į.	scale dependence on cross-section	±3%	\pm 3%
	scale dependence CJV efficiency	$\pm 1\%$	\pm 1%
	parton-shower and underlying event	\pm <10%	\pm <10%
	total summed in quadrature		$\pm < 10\%$

Summary

新しい事:

- 発見のためのBaseline Analysis の確立。
 - -- 基本的にすべてFull simulation
 - -- Background estimationは、Data-driven analysis
 - -- Mass Fitter の開発。
 - -- 一つの解析チャンネルをグループとして解析。

(Author list 47人、12 グループ)

■ 発見のためのロードマップの確立。

- -- 実験が始まるまでに必要な研究課題の把握。
- -- 実験開始から発見までに必要な研究課題の把握。

詳しくは、「LHCが切り開く物理」研究会で。

Consistency check

Basically, the (simplest) fitting seems to work.

Demonstration : simplest Likelihood function

Naïve construction :

$$L_{shape} = \frac{e^{-(n_s + n_{b1} + n_{b2} \cdots)}(n_s + n_{b1} + n_{b2} \cdots)^{N_{obs}}}{N_{obs}!} \prod_{i}^{N_{obs}} \frac{n_s f_s(m_H \mid v) + n_{b1} f_{b1}(m_H \mid v) + \cdots}{n_s + n_{b1} + n_{b2} + \cdots}$$

We would like to include "constraint term from the (independent) external measurements".

Following CDF top mass measurement,

$$L_{bkg} = Gauss(n_{b1}, N_{b1}^{exp}, \sigma_{b1}^{exp}) \times Gauss(n_{b2}, N_{b2}^{exp}, \sigma_{b2}^{exp}) \cdots$$

The likelihood function is formed as

$$L = L_{shape} \times L_{bkg}$$

The combined likelihood function is formed as

$$L_{combined} = L_{lh-channel} \times L_{ll-channel} \times L_{hh-channel}$$

Significance and Mass Fit

The fitting procedure is not finalized yet.

Discussion items are :

Signal mass shape is not like Gaussian as expected.

- --- Parameterize "Multiple Asym.Gaussian"?
- --- Binned fit (not unbinned) ?
- --- Use Jacobian formalism ?

Note: whatever (moderated) parameterization^{0.04} is used, the result is not so sensitive for the modeling itself in the end.

How to include the normalization term.

- --- Background normalization is constraint as the external term,
- --- Or use the shape information from another measurement.

Almost triangle?

Impact on the generator difference

Matthias Roder, Nov.21.2007

Predicts 41% systematics as the maximum fluctuation.

Different event selection, No collinear mass reconstruction, Atlfast

CSC Full simulation

	VBF Higgs(120)	Pythia
Cross section (fb)	22.0 (100 %)	22.0 (100 %)
Trigger	13.04(3) ($59.2(1)%$)	13.12(5) (59.6(2)%)
Trigger lepton	11.63(3) (52.9(1)%)	11.66(5) (53.0(2)%)
Di-lepton	5.46(3) (24.8(1)%)	5.45(4) (24.7(2)%)
Missing p_T	3.16(2) (14.4(1)%)	3.30(3) (15.0(1)%)
Collinear Approx.	2.14(2) (9.7(1)%)	2.25(3) (10.2(1)%)
N jets ≥ 2	1.77(2) (8.05(9)%)	1.98(3) ($9.0(1)%$)
Forward jet	1.34(1) ($6.09(8)%$)	1.38(2) ($6.2(1)%$)
B-jet veto	1.15(1) ($5.25(7)%$)	1.16(2) ($5.3(1)%$)
Angular cut	0.92(1) ($4.22(6)%$)	0.93(2) (4.24(9)%)
Jet kinematics	0.51(1) ($2.34(5)%$)	0.48(1) ($2.18(7)%$)
Central jet veto	0.45(1) ($2.06(4)%$)	0.32(1) ($1.46(5)%$)
Mass window	0.37(1) ($1.71(4)%$)	0.26(1) ($1.18(5)%$)

While predicts 29% difference as the systematics.

Those difference have to be investigated again.

Results from the fast simulation

Very preliminary

Sci. Note: v hep-ph/0402254

PY62, fast simulation w/ event filter, mh=120GeV

PY62, full simulation, w/ event filter, mh=115GeV

CSC Note : PY64, fast simulation w/o event filter,bmh=120GeV

Cut Name (fb)	Sci. Note	Rome	CSC PY64	CSC HW65
Trigger	13.7	12.0	73.5 ± 0.2	72.3 ± 0.9
Tight Tau	6.18	5.81	$8.67{\pm}0.08$	$7.86{\pm}0.37$
Forward tagging	1.97	2.33	$2.41{\pm}0.04$	$2.46{\pm}0.20$
Collinear Approx.	1.27	1.23	$1.52 {\pm} 0.03$	$1.57 {\pm} 0.16$
M_T	1.02	1.0	$1.21{\pm}0.03$	$1.20{\pm}0.14$
Missing E_T	0.81	0.94	$0.99{\pm}0.03$	$0.93 {\pm} 0.13$
Di-jet Mass	0.71	0.89	0.87 ± 0.02	0.77 ± 0.11
Jet Veto	0.63	0.71	$0.52{\pm}0.02$	0.71±0.11
Mass Window	0.52	0.60	$0.42{\pm}0.02$	$0.58 {\pm} 0.10$

Table: Ih-channel

Signal sensitivity is naively consistent.

Known feature: big difference in jet veto between PY62,63,64.

Background Mass shape by Data (II)

For the other background,

Define background mass shape on the midle of the cut flow. Look at the event ratio in the mass window $M_{H} \sim -10$ GeV +15GeV Assume they are flat over cut flow.

Soshi Tsuno(Tokyo) at Jan.17.2007

$Z \rightarrow II$ Fake Weight: x50 $e \epsilon = 25$ % $e \epsilon = 50$ % $e \epsilon = 30$ % $o \epsilon = 60$ % $\begin{array}{c} Z \to 11 \ Fake \ Weight: \ x1i \\ \bullet \ \epsilon = 25 \ \% \quad v \ \epsilon = 50 \ \% \\ \bullet \ \epsilon = 30 \ \% \quad o \ \epsilon = 60 \ \% \\ \bullet \ \epsilon = 40 \ \% \quad o \ \epsilon = 65 \ \% \end{array}$ Z(II)+Njets NUN5 c = 40 % pc = 65 % 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1Col Apple MET ME CIV Col Approx MET My CIV $W \rightarrow 1v$ Fake Weight: x50 e = 25 % e = 50 % WW9 SWW9 g = 30 % og = 60 % L = 40 % DE = 65 % W(In)+Njets 0.4

Using this events as the background mass shape, we obtain large statistics.

ATLAS / CMS Today

Feb.15.2008 ATLAS muon wheel goes in. (second last piece)

Jan.2008 CMS final elements goes in.

Martch.26th.2008

SM Higgs discovery potential

