#### ATLAS実験における VBF rapidity gapの実験的評価 (2008年3月26日 日本物理学会@近畿大学)

東大理、東大素セ<sup>A</sup>、高エネ研<sup>B</sup> 鈴木拓也、 田中純一<sup>A</sup>、津野総司<sup>B</sup>、浅井祥仁、小林富雄<sup>A</sup>

### VBF Η->ττ について

#### SM Higgs の質量が軽い場合、 VBF H->tt は有望なチャンネルとなる。



VBF Higgs は gluonic fusion より 生成断面積が小さいが、以上の カットによって BG を十分抑えら れる。

#### VBF H->ττ のイベントトポロジー

- at least 2 jets with high Pt
- forward & backward jet
- large jet separation (rapidity gap)
- small hadron activity in central region
- $2\tau$  in rapidity gap

#### VBF H->ττ のイベントセレクション

- 2本の jet を要求
- $\eta_1 * \eta_2 < 0$
- $\Delta \eta_{12} > 4.4$
- 1<sup>st</sup>, 2<sup>nd</sup> jet 以外の jet が|η| < 3.2 に存 在したら、vetoする
- $\eta_1 < \eta_\tau < \eta_2$
- di-jet mass > 700GeV
- Missing E<sub>T</sub> > 30GeV

### Rapidity Gap について



VBF では重いW、Z 粒子を交換するので、 high P<sub>T</sub> の forward と backward jet が大きな rapidity gap を持って観測される。またカラー 交換がないため、gap 内にはハドロンの生成 が抑制されている。そのため、Higgs から崩 壊した  $\tau$  のシグナルがきれいに見えることが 期待される。



Rapidity gap 中の Jet (3<sup>rd</sup> jet) の存在確率を実験データに 検証する必要がある。

# 本研究の目的と内容

 ♦ EW Z->µµ +≧2 jets においても、rapidity gap の観測が期待される(主な BG は QCD Z->µµ +≧2 jets となる)。これは良い control sample である。
> EW Z の生成断面積を測定する。

✓ VBF H->ττ において BG となる。

➤ VBF H->ττ における rapidity gap 中の 3<sup>rd</sup> jet の存在確率を検証する。



EW Z production

QCD Z production

◆ EW Z は VBF H と非常に類似している。

◆本講演では、(EW + QCD) Z->µµ を control sample として、η\* 分布 (後述) を用いた EW 成分と QCD 成分の分離に関する研究の報告をする。

# Event Selection と結果 (1fb<sup>-1</sup>の場合)

- (1) 2  $\mu$  with P<sub>T</sub> > 20GeV & opposite charge
- 2 Mass Window  $\pm 15$ GeV
- (3) 2 jets with  $P_T > 50 \text{GeV} \& \min(\eta_1, \eta_2) < \eta_{\mu 1, 2} < \max(\eta_1, \eta_2)$
- $(4) \quad \eta_1 \times \eta_2 < 0$
- 5 b-jet veto
- 6 Missing  $E_T < 50 GeV$
- (7) Number of jet  $\geq$  3

|                            | EW Z  | QCD Z   | ttbar  |
|----------------------------|-------|---------|--------|
| 2μ                         | 556.1 | 29943.4 | 4969.7 |
| Mass Window                | 513.2 | 27318.1 | 1085.3 |
| Jet $P_T$ & Centrality     | 110.0 | 1574.1  | 132.9  |
| $\eta_1 \times \eta_2 < 0$ | 89.5  | 1017.6  | 80.2   |
| B-jet veto                 | 77.9  | 903.8   | 29.5   |
| mE <sub>T</sub> < 50GeV    | 75.6  | 877.5   | 12.7   |
| At least 3 jets            | 34.7  | 561.3   | 10.5   |



#### EW VS QCD Z->μμ (1<sup>st</sup>と2<sup>nd</sup> jetのη分布)



#### EW VS QCD Z->µµ (その他の分布)



η\*分布を用いた方法



S(x)とB(x)の形をそれぞれ MC から 求める。



S(x) と B(x) を固定し、全体の観測量 から割合 f を求める。





 $\eta^*$ 分布を MC より求めているので、systematic study の1つとして、 $\Delta\eta_{12}$  依存性を調べた。

図のように、η\*分布はΔηにあまり依存しない。 > 特定のΔη カットを用いることができる。

| Δη<br>Cut | Δη<br>Unfixed | Δη > 3.0<br>(Fixed) | Δη Fixed /<br>Δη Unfixed |
|-----------|---------------|---------------------|--------------------------|
| > 0.0     | 0.0367        | 0.0373              | 1.016                    |
| > 2.0     | 0.0422        | 0.0421              | 0.998                    |
| > 4.0     | 0.113         | 0.113               | 1.000                    |

前の結果が再現されている。 η\* 分布は Δη に依存しない。

### まとめ

▶ VBF process の特徴はrapidity gapと3<sup>rd</sup> jet である。

▶ 実験データを用いた検証が必要である。

▶Z->µµ+≧2 jets 反応は rapidity gap の検証において有望なチャンネルである。

- ▶ η\*をΔηの関数として、EWZ成分の割合を求めた。
  - > σ(QCD Z + ≧ 2 jets) が測定できれば、σ(EW Z + ≧ 2 jets) を導出できる。

▶ η\*分布はΔη カットに依存しない。

# 今後の展望

> QCD Zとtop の寄与を抑えるためのイベントセレクションの見直し
> η\*分布などからEW 成分を取り出す手法の確立
> VBF H->ττ における 3<sup>rd</sup> jet の研究への応用方法の確立
> systematic study



# Jet ηの分布 (Δη > 3.0)







|                    | EW Z | QCD Z | ttbar |
|--------------------|------|-------|-------|
| $\frac{1}{6}$      | 75.6 | 877.5 | 12.7  |
| Δη > 3.0           | 60.1 | 409.6 | 7.4   |
| At least<br>3 jets | 26.6 | 281.2 | 5.3   |

# η\* 分布、di-jet mass 分布 (Δη > 3.0)



### Δη > 3.0 のときのフィッティングを用いると、

