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Jet and Missing ET at ATLAS

% Jets and MissET are copiously produced at hadron colliders

“* We would like them to represent
» Jet : quarks and gluons
» MissET: non-interacting particles (neutrinos, SUSY LSP, ...)

% Most challenging physics objects to reliably measure
» Theoretically not unique (jet)
» Detector and environmental limitations

Aim:
How do we measure jets and MissET at ATLAS!?
=> Expected performance and validation with real data

How do we calibrate jets in unprecedented regime!
» Very high pr jets
» Pile-up of real jets in physics event




ATLAS Calorimeters

Hadronic Endcap Tile barrel Tile extended barrel
» Liquid Argon/Cu parallel plate structure
» An x A = 0.1 x 0.1 (1.5<|n|<2.5)

» An x A = 0.2 x 0.2 (2.5<|n|<3.2)

» 4 samplings

LAr hadronic
end-cap (HEC)

LAr electromagnetic
end-cap (EMEC)

Hadronic Barrel
» Scintillator/Fe in tiled readout
» An x A = 0.1 x 0.1

» 3 longitudinal samplings

LAr electromagnetic

» Coverage |n|<I|.7 barrel

Electromagnetic Barrel and Endcap

» Liquid Argon/Pb accordion structure Forward

» Highly granular readout (~170,000 channels) » Liquid Argon/Cu or W absorbers

» 0.0025 < An = 0.05,0.025 < Ap < 0.1 » Non-projective geometry

b 2-3 longitudinal samplings » An x Ap = 0.2 x 0.2 (3.2<|n|<4.9)
» Coverage |n|<3.2, pre-sampler up to |n|<I1.8 3 » 3 samplings




Jet in ATLAS

Input to Jet

Calorimeter Tower Calorimeter Cluster
» An x Ap =0.1 x 0.1 » Topologically connected cells in 3-D
» Sum of all cell signals (no cell cuts) » Based on cell energy significance

relative to noise

Jet Algorithm

Seeded cone Kt algorithm
» Iterative cone finder starting from seeds » Combines proto-jets if relative pr is
- seed Et threshold (typically | GeV) proto-jet
- cone size R (=0.4 or 0.7) » No seeds needed
Calibration
“Global” cell-level calibration “Local” cluster-level calibration
» Based on QCD dijet Monte Carlo » Based on single particle Monte Carlo
simulation simulation
» Bring calorimeter jet scale to particle » Bring cluster energy scale to
jet hadronic energy
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Resolution

Jet Performance at ATLAS

Tower Jets Cluster jets
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» Similar stochastic and constant terms between two jet types

» Cluster jets have ~13%(23%) smaller noise term than tower jets
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MIsSET in ATLAS

Missing ET is an event variable representing Et of “invisible” particles

~ o~ detected
v,%,G,... particles

I::> MissET = Y Ev' = - YEf'  (concept is simple...)
i=1 i=1

Experimentally measured from calorimeter signals above noise threshold;
CaloCells

MissExy) = = Y.Ex(v)’, MissET = [MissEx? + MissEy?2]"/2
i=1

|::> » Need to correct for muons and energy loss in dead materials
» Calorimeter cells calibrated at electromagnetic energy scale (e=1)
— Need to calibrate hadronic energy to the correct scale (as e/h > 1)

Global Calibration Refined Calibration (default)
» Apply global cell-level weights to » ldentify physics objects in an event
all signal at once - ,7, T, jets, muons, unused topological clusters

» Decompose objects into constituent cells
» Calibrate cells with object calibration weights
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MIsSSET
Performance

MissET Scale

Fairly robust around a few %
over wide MissET range and
different processes
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MissET Resolution

Follow 0 = a [YET]V2 over
a very wide range of Y Et
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Challenge : Very High pt Jets

» Very high pr jet in a TeV range is an unexplored territory at collider experiment
» Calibration challenging as O(TeV) pr is too high to use y/Z - jet balance method

=> Exploring the technique to calibrate jets at TeV range

Option |. Multi-jet Balance

Jetl » Use QCD multi-jet events

A - 24 jets with pr>40 GeV

: - Jet pr cuts :e.g, 1000<pret!<| 140 GeV, pre2<470 GeV
: - Ad(Jetl, Recoiling jets) > 160 degree
Calibrate jet| » Evaluate jet| energy scale from priet!/prRecoiling Jets
using pr balance J ) Possible to extend pr range by iteration

Jet3
Ke w — N L L B B
0’ L ] “ :
T S T PT1000 (1 fo) I fb-! -
y Jet2 Recoiling Jets > F
L 250 1000<pf“<1 140 GeV/c -
2F E
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| TeV jet scale at | fb"! i E
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Challenge : Very High pT Jets
Option 2. Track-based Method

[Use AR o |/p.rjet] » Use QCD di-jet events

- count all tracks inside the leading jet cone
to measure JES

- calculate AR values over all combinations for
leading N tracks and take mean value

» Complementary to multi-jet balance method
» Need to study flavor (in)dependence

tracks in jet
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Challenge : Jet Pile-up

» Soft pile-up noise = Topological Clustering

JVFfjet1 vix1] = 1
» “Hard” (minimum bias jet) pile-up!? JVFiet1,vix2] = 0 \5.

= 3-D (n,$,Z) jet finding using tracks

- Associate jets to primary vertices

- Evaluate fraction F of charged track
energy in each jet originating in each
identified primary vertex

VFljet2,vix1] = f
JVFfjet2 vix2] = 1-f

=
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Summary

» Jet and Missing ET performance studies at ATLAS
are in good progress

» Most calibrations and corrections are based on
Monte Carlo simulations

» Development of data-driven calibration and
validation technique is crucial

» Many (unexpected) challenges ahead of us, but
being ready to attack problems with useful tools



