ATLAS実験における ttH(→γγ) プロセスを用いたHiggs粒子の 性質の測定について

神前 純一 (KEK) 浅井 祥二 (東大理)、田中 純一 (ICEPP) 日本物理学会 第63回年次大会 2008年3月26日

ttH(→ γ γ)プロセスの特徴

- ttH(→bb) に比べて branching ratio は小さいが
 - 質量の測定精度が良い
 - バックグラウンドが少ない
 - 終状態を再構成する際に jet の組み合わせ によるバックグラウンドが少ない

- → Higgs粒子の運動量を精度良く決定することができる。
- ・フェルミオンとの結合により生成される。
- ・同じ生成プロセスのHiggs粒子の他の崩壊モード(bb、 $\tau \tau$)の結果と比 をとることにより $\Gamma_{\gamma}/\Gamma_{b}$ 、 $\Gamma_{\gamma}/\Gamma_{\tau}$ の良い測定になる
- 終状態の t、t-bar の運動量を再構成することにより scaler/pseudoscaler を区別できる(John F. Gunion, Xiao-Gang He, Phys.Rev.Lett.76:4468,1996)

前回の発表

・同じプロセスについて、t-quark 対の崩壊に含まれる二つのWボゾンが semi-leptonic に崩壊する場合ついて発表を行った。

pp -> ttH (-> $\gamma \gamma$), tt -> (bW)(bW) -> (blv)(bjj)

- top quark からだけではなくWボゾンの崩壊生成物からの光子放出に よるバックグラウンドを評価した。
- jet および electron から生じる fake r から起こるバックグラウン ドを評価した。また、測定器の性能により fake rが生じる割合が変 化の解析結果に与える影響を評価した。
- 120GeVのHiggs粒子について、100fb⁻¹の積分ルミノシティ分の データ収集により3σのシグナルを検出できることが分かった。

Semi-leptonic Mode の選択条件

No. of Photons

 $N_r = 2$, $|\eta_r| < 2.5$, $p_{T_r} > 20GeV$ (1.37< $|\eta_r| < 1.52$ excluded)

- Higher pT photon: pT>50GeV
- pT sum of photons: pTr1+pTr2 > 100GeV
- Photon decay angle at the Higgs rest frame: [cos θ*_r] < 0.85

- No. of leptons (ε lepton = 0.9): Nlepton = 1
 e: pT > 25GeV, |η| < 2.5
 μ: pT > 20GeV, |η| < 2.5
- No. of jets: N_j >= 4, |η_j|< 5, рт_j > 20GeV
- ET sum of jets: ΣETj > 200GeV

Semi-leptonic Mode の解析の結果

・期待される断面積 [×10⁻²fb] と signal significance (mH±2GeV)

	I20GeV	I30GeV	I40GeV
Higgs	6.9	5.6	3.9
ttγγ+γ from decay	1.22	1.02	0.85
jet → γ	0.60	0.39	0.41
e → γ	0.52	0.49	0.32
BG total	2.3	1.9	1.6
Poisson Significance with 100fb ⁻¹	3.0	2.6	1.8
Poisson Significance with 300fb ⁻¹	5.7	5.0	3.8

Hadronic Mode の解析

- Higgs粒子のシグナルの統計を増やすためWボゾンの hadronic な崩壊 過程についての解析を行った。
 pp -> ttH (-> γ γ), tt -> (bW)(bW) -> (bjj)(bjj)
- ・MC サンプル
 - Higgs Signals (Pythia 6.403+CTEQ5L)
 - Irreducible Backgrounds
 ttγγ: MadGraph+CTEQ6LL
 - W decay の崩壊生成物からの photon radiation を MadGraph を 用いて simulate した (一部 overlap があるので差し引く必要あり): tt γ->t(Wb) γ->t(jjb) γ, j->γ (t->jjb in Pythia)
 - Reducible Backgrounds (Jet からの fake photon)
 ttjj: 2 jets -> γ
 ttj γ: 1 jet -> γ
- ・すべての sample は ATLAS の fast simulation program を用いて 測定器の効果の simulation を行った。

Hadronic Mode の選択条件

No. of Photons

 $N_r = 2$, $|\eta_r| < 2.5$, $p_{T_r} > 20GeV$ (1.37< $|\eta_r| < 1.52$ excluded)

- Higher pT photon: pT>50GeV
- pT sum of photons: pTr1+pTr2 > 100GeV
- Photon decay angle at the Higgs rest frame: $|\cos \theta *_{\gamma}| < 0.85$
- No. of leptons (ε lepton = 0.9): Nlepton = 0
 e: pT > 25GeV, |η| < 2.5
 μ: pT > 20GeV, |η| < 2.5
- No. of jets: N_{jet} >= 6, | n_j| < 5, ртј > 20GeV
- No. of b-jets: N_{b-jet} >= 1, |η_j|< 2.5, p_{Tj} > 20GeV
- ET sum of jets: ΣETj > 300GeV

Hadronic Mode の解析の結果

・期待される断面積 [×10⁻²fb] と signal significance (mH±2GeV)

	120GeV	I30GeV	I40GeV
Higgs	13.5	11.0	7.6
ttγγ+γ from decay	I.92	I.46	0.97
jet → γ	1.33	1.38	I.52
BG total	3.3	2.8	2.5
Poisson Significance with 100fb ⁻¹	4.9	4.3	3.2
Poisson Significance with 300fb ⁻¹	8.9	7.9	6.0

両崩壊 Mode を合わせた結果

・期待される断面積 [×10⁻²fb] と signal significance (mH±2GeV)

	I20GeV	130GeV	I40GeV
Higgs	20.4	16.6	11.5
BG total	5.6	4.7	4 .I
Poisson Significance with 100fb ⁻¹	6.0	5.3	4.0
Poisson Significance with 300fb ⁻¹	10.7	9.5	7.3

CP の決定/測定

 このプロセスでは質量が軽くベクターボゾン対への崩壊比が小さいような Higgs粒子について CP の情報を得られる可能性がある:
 J.F. Gunion and X.-G. He, "Determining the CP nature of a neutral Higgs boson at the LHC",
 Phys.Rev.Lett.76 (1996) 4468; hep-ph/9602226.

 $\mathcal{L} \equiv \overline{t}(c + id\gamma_5)th \qquad |\mathcal{M}|^2 \propto M_{Q^2}(c^2 - d^2)$

・終状態の t、t-bar の運動量を再構成し、それらの運動量の組み合わせで得ら れるいくつかの変数を比較する。

$$\begin{aligned} a_1 &= \frac{(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})}{|(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})|} & b_1 &= \frac{(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})}{p_t^T p_{\bar{t}}^T} & b_2 &= \frac{(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})}{|\vec{p}_t| |\vec{p}_{\bar{t}}|} \\ a_2 &= \frac{p_t^x p_{\bar{t}}^x}{|p_t^x p_{\bar{t}}^x|} & b_3 &= \frac{p_t^x p_{\bar{t}}^x}{p_t^T p_{\bar{t}}^T} & b_4 &= \frac{p_t^z p_{\bar{t}}^z}{|\vec{p}_t| |\vec{p}_{\bar{t}}|} \end{aligned}$$

ただし、t、t-bar の運動量の再構成には、効率の悪さ、バックグラウンドの 影響、精度等の問題がある。

→ t、t-bar ではなくHiggs粒子の運動量に違いがあるかを考えた。

CP の決定/測定

トップ・クォーク随伴生成で生成された120GeV の質量のHiggs粒子の pT
 及び n をパートン・レベルの情報を用い、いくつかのイベント・ジェネレー
 タで比較してみた。

 CP even の場合と、CP-odd の場合であきらかな違いが見られた。(イベン ト・ジェネレータ同士の違いは小さい)

CP の決定/測定

Inl

・比較のために bbH の場合を見ると、、

Рт

b-quark の質量は t-quark の質量より小さいため CP-even と CP-odd の差による効果が小さい。

Inl

・シミュレーションのサンプルで pr 及び η の分布を比較する (m_H=120GeV)

やはり同様の違いを観測する事が出来る。

Рт

- 分布の形の違いを比較するため、検出されたHiggs粒子の pT および ŋ の値 がある値よりも大きいイベントと小さいイベントの数の比を求め、CP-even の場合と CP-odd の場合で比較した。
 pT の場合: pTcut = 150 GeV, R(High/Low) = N(High pT) / N(Low pT)
 ŋ の場合: |ŋ|cut = 1.0, R(Cent/Forw) = N(Central) / N(Forward)
- ・まずパートンレベルで値を調べる(MadGraph, m_H=120GeV):

	CP-even	CP-odd	ΔR
p⊤: R(High/Low)	0.40	1.18	0.88
η: R(Cent/Forw)	0.75	1.13	0.38

• pт の解析の結果:

MadGraph、 mн=120GeV、 pтсut = 150GeV、 (バックグラウンドを含んだ解析)

	CP-even	CP-odd
R(High/Low)	0.48	1.18
ΔR(100fb⁻¹)	0.20	0.45
∆R(300fb ⁻¹)	0.12	0.26

R(CP-odd) - R(CP-even) ≈ 0.7

300fb⁻¹ の積分ルミノシティがあれば "pure" CP-even と -odd のHiggs 粒子を充分区別することが可能

• | η | の解析の結果:

MadGraph、m_H = 120 GeV、 $|\eta|_{cut}$ = 1.0、 (バックグラウンドを含んだ解析)

	CP-even	CP-odd
R(Cent/Forw)	1.00	1.41
ΔR(100fb⁻¹)	0.41	0.54
∆R(300fb ⁻¹)	0.24	0.31

R(CP-odd) - R(CP-even) ≈ 0.4

p⊤ の解析と比較すると期待される significance は小さい

結果とまとめ

- ttH(->γγ)は軽いHiggs粒子の CP 情報を得ることが出来るユニークなプロセスである。t-quark対の崩壊に含まれる二つのWボゾンについて、semileptonic 及び hadronic な崩壊過程を合わせた解析により 100fb⁻¹の積分ルミノシティでおよそ6σのHiggs粒子のシグナルを得られる。
- ・終状態の t、t-bar の運動量を再構成せずにHlggs粒子の pr 及び n の分布
 を比較することによりHiggs粒子の CP の情報を得ることが出来る。
- 300fb⁻¹の積分ルミノシティで pure CP-even と -odd のHiggs粒子を区 別することが可能。
- CP-even と -odd の混合状態を解析するために解析方法を改善する。
- ・Side-band イベントによるバックグランドの差し引きによる改善。
- ・結合定数の決定の解析。