ATLAS-TGC トリガーのシミュレーションによる性能評価

<u>堀卓也</u>、蔵重久弥、大町千尋(神戸大理) 石野雅也、金谷奈央子、平山翔(東大素セ) ATLAS日本TGCグループ

□ 導入

- Coincidence Windowについて
- □ エフィシエンシーとトリガーレート
- Coincidence Windowにおける高レート領域のマスク
- □ バックグラウンドによる影響
- 🗆 まとめ

シミュレーションを用いてLVL1 End-cap muon triggerの 性能評価を行った

- LVL1 End-cap muon trigger
 - 高い反応レートから興味のあるイベントを選別
 - 三段階のトリガーシステムの初段の一つ
 - muonの横方向運動量(pT)を用いる
 - → トロイド磁場によるmuonの飛跡の曲がりから概算

Coincidence windowの参照

Coincidence Window

∃ 研究の目的

- Coincidence Windowの性能により
 トリガーレートが大きく変わる
- → 想定される状況をシミュレートし評価を行う

- Coincidence Windowの作成方法
 - single muon sampleをFull Simulationにより作成
 - Rol毎に⊿r,phi平面での分布図をつくる
 - pT毎に分布図を用いてエントリーの多いセルから開ける
 - → 開けたセルのエントリーの合計がそのRoI内に入射した 全エントリーの95%になるまで開ける

全エントリーの何%まで開けるかを変化させることで、rateの操作が可能

Trigger efficiency & Trigger rate

Trigger efficiency

- pT毎にsingle muonをシミュレート
- 生成されたmuon数とトリガーされた数の比を求める

Trigger efficiency & Trigger rate

Trigger rate : convolution method

得られたefficiencyから予想されるトリガーレートを計算する

→ Trigger rate = efficiency × cross section × luminosity

得られた結果は10~30kHzであり、許容範囲であると予想される ※低いpT領域は微分断面積が大きく、レートに強く影響するが、不定性が大きい

Mask study for High rate regions

- Endcap領域での積分磁場が弱く、分解能の悪い領域では pTの低いmuonをトリガーすることがある
- □ 閾値以下での有限のefficiency

→ レートを上げる原因

こういった領域をマスクし、efficiencyとrateへの影響を見積もる

Mask study for High rate regions

	マスク無し	MU40以外マスク	全てマスク
Efficiency(plateau)	94.7%	94.7%	93.2%
Rate(kHz) MU06@10 ³³	15.3	11.7(~23% down)	10.8(~29% down)
Efficiency(plateau)	93.4%	93.4%	91.9%
Rate(kHz) MU20@10 ³⁴	25.0	22.3(~11% down)	13.3(~47% down)

MU40以外をマスクする事によりefficiencyを維持したままレートを下げることが可能

Effects of Cavern background

Cavern background - <u>残留放射線によるバックグラウンド</u>

衝突により発生した中性子やガンマ線は低いエネルギーで アトラスホール内を漂い、検出器と反応しヒットをつくる

•例 。	particle fluxes @10 ³⁴ cm ⁻² s ⁻¹	中性子:4.9、ガンマ線:4.4 [kHz/cm ²]
		ミューオン:3.0、陽子:10 [Hz/cm ²]

→ ヒットの増加によりefficiencyが上昇し、rateに影響する

	Efficiency @MU06	Efficiency @MU20
3 GeV muon	0.69±0.07%	0.11±0.03%
3 GeV muon with BG	1.1±0.09%	0.17±0.038%
100 GeV muon	95.0±0.21%	93.7±0.23%
100 GeV muon with BG	94.9±0.21%	93.6±0.24%

バックグラウンドの有無によるeffciencyの変化 (safety factor:2)

- ・100 GeV muonに対しては有意な変化は見られない
- 3 GeV muonに対してはefficiencyが上昇、結果rateは上昇する

まとめ

- LVL1 Endcap muon trigger の性能評価を行った
- □ 高レート領域に対しマスク処理を施すことによる エフィシエンシーとレートへの影響を見積もった

→ efficiencyを維持しつつrateを抑えることが可能

□ バックグラウンドによる影響を見積もった

→ Low pT muonのefficiencyの上昇により rateが上昇すると考えられる

今後

- □ ミスアライメントや欠けチャンネルなどの影響
- □ 低いpT領域へのトリガーアクセプタンスの拡大

back up

Effects of Cavern background

Effects of cavern background

横軸: バックグラウンドの有無 (safety factor:2), 縦軸: efficiency

Effects of Cavern background

	Efficiency @MU06	Efficiency @MU20
3 GeV muon	0.69±0.07%	0.11±0.03%
3 GeV muon with BG	1.1±0.09%	0.17±0.038%
6 GeV muon	80.0±0.32%	1.0±0.08%
6 GeV muon with BG	79.5±0.32%	1.15±0.08%
10 GeV muon	92.6±0.19%	10.4±0.21%
10 GeV muon with BG	92.3±0.19%	10.8±0.22%
15 GeV muon	94.0±0.18%	78.3±0.32%
15 GeV muon with BG	93.9±0.18%	77.6±0.32%
21 GeV muon	95.0±0.18%	93.6±0.20%
21 GeV muon with BG	94.9±0.18%	93.3±0.21%
50 GeV muon	94.7±1.25%	93.8±1.34%
50 GeV muon with BG	94.7±1.25%	93.8±1.34%
100 GeV muon	95.0±0.21%	93.7±0.23%
100 GeV muon with BG	94.9±0.21%	93.6±0.24%