ATLAS実験におけるLVL1 Muon Trigger System のコミッショニング

神戸大自然 東大素セ^A 新保直樹、喜家村裕宣、蔵重久弥、金谷奈央子^A、 他ATLAS Japan HLTグループ

 J/ ψ→µµのフルシミュレーションデータを用いてLVL1 muon Trigger efficiencyの測定方法の開発及び評価

本研究ではpp→J/ψ→µµ event を用いて Trigger efficiencyの測定を行う

※Z→µµによるHigh pt muon のTrigger efficicencyは測定済み

method

$$\varepsilon_{trig} = \frac{Triggered muon数}{probe muon数}$$

Probe muonに対応するROIが存在 =triggered muon

ROI・・・Triggerの位置情報

$$d\mathbf{R} = \sqrt{(d\phi^2 + d\eta^2)}$$

(d\phi = |\phi_{rec} - \phi_{roi}|, d\eta = |\eta_{rec} - \eta_{roi})

Single muon sampleを用いてdRを見積もる

result

Single muon sampleとJ/ψ→µµ sampleのTrigger efficiencyを比較

*J/ψからの muonをsingle muonの条件 Pt(GeV) に合うようにη分布をnormalize

- ●Single muonを使うことにより biasのかからないefficiencyを 得る事が可能
- ●本研究でのTrigger efficiency のbiasの有無をチェック。

今回の方法によりbiasが非常に小さいtrigger efficiencyを算出可能

Trigger Efficiencyの精度の見積もり

6GeV, plateauにおいて、100pb⁻¹でO(10⁻³)の精度でTrigger efficiencyを計算できる。

Backgroundの解析

※bb→µ+X ::bbから崩壊した粒子の1つが6GeV以上のµ(bbµ6x)

Background estimation($J/\psi \rightarrow \mu\mu$) Background

Background candidate bbmu6x,di-jet sample

 $J/\psi \rightarrow \mu\mu + background$

※L:2.8pb⁻¹にスケールして計算

bbµ6xのbackgroundは13%、dijetからのbackgroundの寄与は3%

bbµ6x+Zττ+Wµv+topのbackgroundは2.7%、dijetからのbackgroundの寄与は 1.1%

Trigger efficiency with background

まとめ

- ATLAS LVL1 Muon Trigger Efficiencyの測定アルゴリズムの開発と評価を行った
- J/ψ→μμ,Z→μμを使用すると100pb⁻¹で10⁻³の精度でtrigger efficiencyを 正しく求める事が可能
- 主なbackgroundを考慮に入れてもTrigger efficiecyへの影響が少ない 事が見積もられた

Backup

測定方法の評価

- Single muon samples: 1イベントに唯1つのミューオン
 - □ ミューオンを選ぶときの不定性がない。
 - MC truth情報を使うことにより、全くバイアスのかかっていないTrigger efficiencyを求められる。
 - 本研究でのTrigger efficiencyの測定方法の精度、バイアスの有無を チェック。

J/ψ→μμサンプルの結果をスケール → Eta分布の違いによる寄与を除去

Validation

$J/\Psi \rightarrow \mu\mu \mathcal{O}$ background

 $Z \rightarrow \mu \mu \mathcal{O}$ background

Commissioning

Z-> $\mu\mu$ VS Background

- 全てのサンプルについて、不変質量分布を出す。
 イベント選別は実際の計算方法(※)を適用。
- 全てのサンプルの不変質量分布をガウシアンでフィット。
- フィット結果を91.19±10GeVの範囲で積分。
- それぞれ100pb⁻¹相当にスケールして比較。

Ζμμ	bb	t	Ζττ	Wμν
109719	2624.4	199.6	44.9	860.6
(100)	(2.4)	(0.2)	(0.04)	(0.08)

of events / 100pb⁻¹

→ BackgroundはZµµの約3%程度

Coincidence Window

4,6,8,11,20,40GeVØ configuration

Reconstruction efficiency

Track particle candidateはtriggerの有無によらずreconstruction efficiencyが一定

Single muonによるmatching用dR関数の妥当性の検証

 Single muonに対してdRのcutを要 求あり、なし両efficiency を 比較す る

→誤差内で一致

	4GeV	5GeV	10GeV	11GeV	19GeV
$m{\mathcal{E}}_{trig}^{truth}$	0.064±0.006	0.468±0.008	0.909±0.090	0.920±0.006	0.959±0.004
$oldsymbol{\mathcal{E}}_{trig}^{track}$	0.064 ±0.006	0.472 ±0.008	0.914 ±0.090	0.924 ±0.006	0.954 ±0.004
$oldsymbol{\mathcal{E}}_{trig}^{track'}$	0.063±0.006	0.468±0.008	0.911±0.010	0.921±0.006	0.953±0.004