ATLAS実験における、超対称性粒子の 質量が縮退したモデルとmSUGRAモデルとの間の パラメータの対応関係について 日本物理学会 秋季大会 @北海道大学 2007年9月21日(金) 神戸大自然, 高工研^A **岡田勝吾,喜家村裕宣,野尻美保子A,川越清以**

- ロ 超対称性粒子の質量が縮退したモデル
- □ 研究目的
- ETmiss分布のフィッティング
- 回 縮退モデルとmSUGRAとの区別
- □ まとめと今後

春の学会では、縮退モデルの超対称性粒子の発見可能性の研究を行った。

●そこで今回は, 縮退モデルとmSUGRAの超対称性イベントが区別可能か研究を行った.

Backgroundの影響が少ない1-lepton modeだけで話を進めます.

ETmiss>500GeVでmSUGRAのETmiss分布を縮退モデルに合うように、gluinoの質量を変えて cross-sectionをフリーパラメータとして、x²フィットした。

フィッティングから分かる"イベントの持つ典型的な質量スケール"と"cross-section"を

評価する事で、縮退モデルとmSUGRAモデルが区別できるか議論していく.

"イベントの持つ典型的な質量スケール"として、squarkが直接LSPへ崩壊したときの ジェットの持つ運動量Pcmと定義する。

	Pcm		Pcm		Pcm		Pcm
R=20	656GeV	R=30	598GeV	R=40	495GeV	R=50	361GeV
mSUGRA	654.3±22.7GeV	mSUGRA	594.2±22.8GeV	mSUGRA	514.1±56.4GeV	mSUGRA	437.6±146.9GeV

Msusy=2Pcmの関係からベストフィットのmSUGRAポイントのsquarkの質量を計算して, 縮退モデルのsqaurkの質量と比較.

	R=20	R=30	R=40	R=50
Msquark[GeV] : mSUGRA	1357.5±22.7	1231.3±22.8	1063.4±56.4	903.0±146.9
Msquark[GeV] : 縮退モデル	1473	1474	1471	1461

→縮退モデルとは異なる質量を持つ.

ここまでのまとめ

縮退モデルのETmiss分布をmSUGRAモデルのETmiss分布でフィットした.

ETmiss分布のフィットでイベントの持つ質量スケールPcmが決まり,

これは、縮退モデルとmSUGRAの両方で使えるパラメータである。

■一方、ベストフィットするmSUGRAポイントの超対称性粒子は縮退モデルとは 異なる質量を持つこともある。

縮退モデルとmSUGRAモデルは区別出来るか?

ははははははははははははははははははははははははは 縮退モデルとmSUGRAモデルとの区別

cross-section[fb] (mSUGRA;1-lepton mode)

mSUGRAではPcmが同じ値を取っても、 MgluinoとMsquarkが変化することでcross-sectionが大きく変わっていく.

縮退モデルのPcmの範囲で, MgluinoまたはMsquarkを変えていくことで, 1-lepton modeでの 縮退モデルのイベント数と等しくなるmSUGRAポイントが存在するか調べる. →イベントの特徴を調べることで, 縮退モデルとmSUGRAが区別出来るか探っていく.

PointAおよびBの10fb⁻¹での1-lepton modeのイベント数は縮退モデルの2倍以上多い. Msusy=Msquarkの場合は、イベント数から縮退モデルとmSUGRAモデルの区別できる.

"レプトンの電荷分布から区別が可能ではないか?" PointC&PointDではMgluino<Msquarkだから pp衝突でgluinoが生成されてLSPへとカスケード崩壊するのがメイン. gluinoはマヨラナ粒子なため, <u>gluinoの崩壊で放出されるl+とl-の比は1:1である.</u> 縮退モデルではMgluino>Msquark だから pp衝突によりsquarkが生成されてLSPへ崩壊するのがメイン $ilde{u}_L$ の方が d_L よりも多く生成されるので<u>I+の方がI-よりも多くなる傾向にある</u>.

"leading 4jetsのうち2nd jet以降のPT分布の違いから区別出来ないか?"

質量が縮退しているため、2nd jet以降のPTはmSUGRAと比べたら低い傾向にある。

1-lepton modeにおいて,超対称性粒子の質量が縮退したモデルのETmiss分布を,mSUGRAモデルで フィットすることで,イベントの持つ質量スケールや生成断面積(イベント数)を評価することで, 両モデルの区別を付けることが可能か研究を行った.

ETmiss分布のフィッティング

●イベントの持つ質量スケールPcmは,縮退モデルとmSUGRAで一致.どちらでも使えるパラメータ. ●ベストフィットポイントのmSUGRAの超対称性粒子は,縮退モデルとは全く異なる質量を持つ.

縮退モデルとmSUGRAとの区別

Msusy=Msquarkの場合,イベント数から両者の区別が出来る.

Msusy=Mgluinoの場合,1-lepton modeの縮退モデルの現象を再現するmSUGRAポイントが存在する.

イベントの特徴から縮退モデルとmSUGRAモデルの区別が必要.

現在研究中(→レプトンの電荷分布やジェットのPT分布).

今後の予定

Msusy=Mgluino(1-lepton mode)での,縮退モデルとmSUGRAモデルの区別の研究. Full Simulationでの研究

0-lepton modeでの縮退モデルとmSUGRAモデルの区別の研究.

Backup

total cross-section for each degenerate point

	R=0.1	R=20	R=30	R=40	R=50
cross-section	156.9fb	128.3fb	120.7fb	115.9fb	113.4fb

13

mSUGRAモデルのETmiss分布による縮退モデルのχ2フィットから ベストフィットポイントのPcmの決定

14

Pair Production Processes(1-lepton mode) ∫dtL=50fb-1

Branching Ratio into lepton mode (R=20 & R=30))		
$\sim ~~\sim^+$			
u_L χ_1 χ_1		R=20	R=30
	UPL->W1SS DN	0.656	0.653
d W^+	– W1SS->Z1SS W+	0.998	0.999
	W+ -> leptons	0.22	0.22
Branching Ratio into lepton mode (PointC)			
$ ilde{u}_L$ $ ilde{\chi}_1^+$ $ ilde{\chi}_1^0$	UPL->W1SS DN	0.	357
	W1SS->Z1SS W+	0.9	999
$d \longrightarrow W^+$	W+ -> leptons	0.	.22
~ ~			
$ ilde{u}_L$ g t_1 $ ilde{\chi}_2^+$ $ ilde{\chi}_2^0$	UPL->GLSS UP	0.4	443
	GLSS -> TP1 TB	0.	388
u \overline{t} b	TP1 -> W2SS+ BT	0.	374
W^+	W2SS+ -> Z2SS W-	+ 0.	313
	W2SS+ -> W1SS+ Z	0 0.	300
	W2SS+ -> Z1SS W-	+ 0.	108

16

•

			12			_
Branching	Ratio	into le	pton	mode	(PointD))

$ ilde{u}_L$	$\tilde{\chi}_1^+$	$ ilde{\chi}_1^0$	_ [
	d		W^+
$ ilde{u}_{I}$ $ ilde{g}$	\tilde{t}^*	$\tilde{\chi}_2^+$	$\tilde{\chi}_2^0$
u	\overline{t}	b	W^+

UPL->W1SS DN	0.228
W1SS->Z1SS W+	1.000
W+ -> leptons	0.22

UPL->GLSS UP	0.443
GLSS -> W2SS BT TB	0.128
W2SS+ -> Z2SS W+	0.314
W2SS+ -> W1SS+ Z0 (W1SS -> Z1SS W+)	0.303
W2SS+ -> Z1SS W+	0.110

sparticle mass (PointC & PointD)

	Mgluino	Msquark	ark MLSP	
PointC	1361GeV	1733GeV	240GeV	
PointD	1248GeV	1972GeV	213GeV	

<u>NA NA NA NA NA NA NA NA NA NA</u>	<u>n n n n</u>	<u>n n n n</u>	<u>M M M M</u>			
***	盐盐盐盐	林林林林	林林林林			
GulinoとSquarkのどちらが重いかによって	現象にどのよう	5な影響を与え	るか考察する.			
M _{gluino} <m<sub>squarkの場合</m<sub>						
●point CおよびDではsquarkはgluinoよりも	質量が大きいので	、 pp衝突では軽	い方の			
gluinoが主に生成されてLSPへとカスケード崩	崩壊する.					
●しかし、pp衝突でsquarkが生成されることも	もあり、その場合	は質量差も4000	GeV~700GeV			
と大きいので, sqarukはおおよそgluinoへ崩	壊してLSPへと崩	壊していくはず	である.			
\tilde{u}_{I} \longrightarrow \tilde{a} Branch		PointC'	PointD'			
³ -44% : PointC	Mgluino	1361GeV	1247GeV			
$u \sim -64\%$: PointD	Msquark	1732GeV	1972GeV			
PointCとDは、結構な割合でgluinoを経由し	ってLSPへ崩壊して	こいく.				
さらにgluinoはマヨラナ粒子なため, <u>gluin</u> d	oの崩壊で放出さ	れる1+と1-の比は	1:1である.			
Maluino>Msauarkの場合						
●一万, 縮退モデル(R=20,R=30)の様にgluinoの万がsquarkより重い場合は、pp衝突により						
squarkが主に生成されてLSPへ崩壊していく.						
$ ilde{u}_L$ の方が $ ilde{d}_L$ よりも多く生成されるの ⁻	で <u>l+の方がl-より</u> そ	も多くなる傾向に	こある.			
•••••••••••••••••••••••••••••••••••••••			18			

mSUGRA(PointC&PointD)と縮退モデル(R=20&R=30)の電荷分布

縮退モデル(R=20&R=30)とmSUGRA(PointC&PointD)の2nd~4th jetの横運動量分布

