Study of τ -ID performance using Z $\rightarrow \tau \tau$ events at ATLAS

小曽根健嗣 高工研 (ICEPP fellow)

田中純一、津野総司東大素粒子センター

- 1. motivation
- 2. tau decay の特徴
- 3. tau reconstruction and identification
- 4. $Z \rightarrow \tau \tau$ cross-section in the early data
- 5. summary

1. Motivation

- 1) ATLAS での tau の ID performance 評価
- 2) LHC 初期データ(~1fb⁻¹) での Z→ττ cross section 測定

2. Tau decay の特徴

3

3. Tau reconstruction and ID

日本物理学会 2007 年春季大会 @ 首都大学東京南大沢キャンパス

26/Mar/2007 Kenji OZONE

Tau ID Cuts

日本物理学会 2007 年春季大会 @ 首都大学東京南大沢キャンパス

26/Mar/2007 Kenji OZONE

Reco+ID efficiency and fake rate

Tracker やカロリメータ出力をパラメータとする Likelihood 関数の値で ID できるが、 cut-base の tau-ID で performance を研究することが実験初期で重要。

4. Inclusive cross-section of $Z \rightarrow \tau \tau \rightarrow Ih$

$Z \rightarrow \tau \tau$ selection

Missing ET cut: QCD jet BG を抑える >15GeV Transverse mass: W からの BG を抑える。 <30GeV Invariant mass cut: Z→ττ を選び出す。 $40 \text{GeV} < \text{m}_{e\tau} < 60 \text{GeV}$

Acceptance

				preliminary
-	Process	$Z^0 \rightarrow \tau^+ \tau^-(eh)$	$t\overline{t}$	$W^{\pm} \rightarrow e^{\pm} \nu$
-	Cross Section [pb ⁻¹]	246.0	461.16	10899
-	Trigger	17.4 ± 0.2	102 ± 1	5785 ± 28
	Tight Electron [*]	16.5 ± 0.2	91 ± 1	5784 ± 28
	Di-lepton veto**	6.6 ± 0.1	46.7 ± 0.8	2970 ± 18
	MET> 15GeV/c	3.5 ± 0.1	44.3 ± 0.8	2287 ± 18
	$M_T < 30 \text{GeV/c}$	1.98 ± 0.08	5.5 ± 0.2	31 ± 1
-	IsoFrac> 0.1 EMRadius> 0.1 nStrip< 20 Wstrip< 0.015	0.42 ± 0.03	0.55 ± 0.08	1.1 ± 0.2
	1,3 tracks	0.35 ± 0.03	0.14 ± 0.04	0.4 ± 0.2
-	Z mass	0.34 ± 0.03	0.08 ± 0.02	0.27 ± 0.09
Jnit: pb		* PT>25GeV, η <2.5 for ID'd electron		

** for PT>15GeV electrons

以上の selection の後、各々の Ntrk 分布を作成。

QCD background の shape は data から求める。

l

Ntrk fit in pseudo experiment

Cross section measurement

得られる Cross section の error を評価してみる。

Summary

LHC 物理において tau は重要な役割を担う。

Tau の performance study

■Cut-based ID では以下の performance が得られた。

✓ efficiency = 30~50% (>30GeV/c)

✓ fake rate = $1 \sim 2\%$ (QCD jet)

□ LHC初期のデータL=1fb⁻¹ でおよそ 350 events の Z→ττ candidate が観測され、12%(stat.)の精度で cross section の測定が可能。