SUSY粒子の質量が縮退している場合の ATLAS実験による発見の可能性

2007/03/27

神戸大自然, KEK^A <u>岡田勝吾</u>, 川越清以, 野尻美保子^A, 喜家村裕宣

1

Outline

- Introduction
 - SUSY Event Topology
- MMAM model
- Monte Carlo Event Samples
- Event Selection (SUSY Standard Cut)
- Results
 - □ Missing ET & Effective Mass
 - Significance
- Summary & Outlook

Introduction : SUSY Event Topology

mSUGRA

□Gluino/SquarkとLSPの質量差が大きい為, High Pt Jets/Leptonsが生じる.

■質量が縮退した場合

□Jets/LeptonsのPtが低くなる. ⇒Backgroundの影響をさらに受けやすくなる.

■過去に, SUSY粒子の質量が縮退した場合の詳しい研究がされていない. ⇒今回, MMAMモデルを用いて研究を行った.

MMAM : Mixed Modulus Anomaly Mediation

■2つのSUSY Breaking Parameterを持つ.

- $\Box F_T$: Volume modulus $\mathcal{O}F$ term
- □F_c: mSUGRAのcompensator fieldのF term

■SUSY粒子の質量は以下のパラメータで決定される.

$$R = F_C / F_T$$
, $\tan \beta$, $M_0 = \frac{F_T}{T + T^*}$ (T: volume modulus)

■質量スペクトルは次のパラメータで決定される.

$$\alpha = \frac{R}{\ln(M_{\text{Planck}} / m_{3/2})}$$

→ α (or R)を変化させることで、SUSY粒子の質量スペクトルをmSUGRA-likeから
Anomaly Mediation-likeまで変化させることができる。

→MMAMはmSUGRAとAMの両方を含んだモデル.

Ref: Kiyotomo Kawagoe and Mihoko M. Nojiri "Discovery of supersymmetry with degenerate mass spectrum" *Phys. Rev.* D **74**, 115011 (2006)

Higgsino Mass

■各Rポイントでの, GluinoとLSPの質量 (M₃(GUT)=650GeV)

R	0.1	20	30	40	50
M _{gluino} [GeV]	1493	1490	1488	1486	1486
M _{LSP} [GeV]	270	486	639	840	1039

Monte Carlo Event Samples

PT of leading 4-Jet : 10fb⁻¹

Event Selection (SUSY Standard Cut)

■0-lepton mode

- □# of jets ≥ 4, Pt(1st) > 100GeV, Pt(others) > 50GeV, ($|\eta|$ < 2.5)
- \square # of leptons = 0
- Imax(0.2*Meff, 100GeV)
- □Meff > 400GeV

□Meff > 400GeV

□Mt >100GeV

□St > 0.2

$$M_{\text{eff}} \equiv \sum_{i=1,\cdots,4}^{\text{leading4-jets}} P_T + E_T$$

1-lepton mode

- □# of jets ≥ 4, Pt(1st) > 100GeV, Pt(others) > 50GeV, ($|\eta|$ < 2.5)
- \square # of leptons \ge 1, only e/ μ with Pt >25 GeV ($|\eta|$ <2.5)

■Missing Et > max(0.2*Meff, 100GeV)

 $M_{\rm eff} \equiv \sum_{i=1,\cdots,4}^{\rm leading4-jets} P_T + \sum_j^{\rm leptons} P_T + E_T$

□St > 0.2

■ Significance = $N_{\text{Signal}} / \sqrt{N_{\text{Background}}}$ はMissingET Cutの値の関数. □Discoveryの定義はSignal >10, Significance>5とする.

■10fb⁻¹でR=40まで発見の可能性がある. R=50は難しい.

Summary & Outlook

Summary

- □MMAMモデルのSUSY粒子のLHCにおける発見可能性の研究を行った.
- □質量の縮退による効果が、MissingET、EffectiveMass、PT of leading 4-Jetの 各分布に現れた.
- ■10fb⁻¹では0-lepton mode, 1-lepton mode ともにR=40まで発見の可能性がある. しかし, R=50は難しい.

Outlook

□Significance改善のための研究.

□Cross-sectionなどを用いてmSUGRAとMMAMの違いをつける.

■縮退したSUSY粒子の1fb⁻¹での発見は難しい.

Appendix : Cross-sections of Signals

R	Cross-section		
0.1	156.9 fb		
20	128.3 fb		
30	120.7 fb		
40	115.9 fb		
50	113.4 fb		

Appendix :

Cross-sections of Background Processes

Process	Cross-section	
ttbar (->lvlv) + njets	98.7[pb]	
ttbar (->Ivqq) + njets	394.8[pb]	
ttbar (->qqqq) + njets	394.8[pb]	
W (-> I_V) + njets	1014.8[pb]	
Z (-> ee) + njets	158.9[pb]	
Z (-> μμ) + njets	158.7[pb]	
Z (-> ττ) + njets	158.9[pb]	
Z (-> vv) + njets	912.8[pb]	
Multi jets	55.7*10 ⁶ [pb]	