

ATLAS実験宇宙線テストにおける シリコン飛跡検出器の検出効率の評価

筑波大学 数理物質科学研究科 永井 義一

原和彦, 井上孝紀, 美馬覚^A, 田中礼三郎^A, 内藤大輔^A, 近藤敬比古^B, 海野義信^B, 池上陽一^B, 高力孝^B, 寺田進^B, 高嶋隆一^C, 山下良樹^C, 上田郁夫^D, 花垣和則^E,

他アトラスSCTグループ

筑波大物理, 岡山大自然^A, 高工研^B, 京都教育大^C, 東大素^D, 阪大^E

2007年3月27日 日本物理学会@首都大学東京

目次

✓ 序論

- ATLAS検出器
- SCTバレルシリコン検出器
- 宇宙線テストの概要
- ✓ SCTバレルシリコン検出器の性能評価
 - 宇宙線イベントの再構成
 - SCT検出器の位置補正
 - SCT検出器の検出効率
- ✓ 結論と今後の予定

ATLAS検出器 (A Toroidal LHC ApparatuS)

• 内部飛跡検出器

Pixel:シリコンピクセル検出器

SCT:シリコンマイクロストリップ検出器

TRT:遷移輻射ストローチューブチェンバー

- カロリメータ
- <u>μ粒子検出器</u>
- マグネットシステム

カロリメ-

マグネットシステム

重量:7000トン 飛跡検出器: $|\eta| < 2.5$ **カロリメータ**: |η| < 4.9

SCTバレルシリコン検出器

Hybrid with ASICs SCTバレルモジュールの特徴

✓ 2次元的な位置測定

シリコンセンサー(6cm×6cm)を表裏2枚ずつ、 ステレオ角40mradで張り合わせることにより、単独 モジュールで2次元的な位置測定が可能

✓ 位置分解能

ストリップ間隔は80μm、SCTモジュール片面で の位置分解能は23μm

SCTバレルシリコン検出器

シリンダー4層、SCTバレルモジュール2112枚 から構成される。

宇宙線テスト概要

<u>目的</u>

- SCTおよびTRT検出器のオペレーションテスト
 - SCT+TRT検出器を同時に扱う
- SCTおよびTRT検出器の性能評価

> ノイズテスト、検出効率評価 等

宇宙線テスト概要

データ収集システム

宇宙線テスト概要

Z-Y 平面

SCTモジュール数:468 (Top=252, Bottom=216) (B3,B4,B5,B6) = (84/108/144/132)

宇宙線トリガーイベント数:約132k ⁷

ヒットの再構成

トラックの再構成

- Space Pointからトラックの候補を探す(パターン認識)
 - Space PointをR-Φ平面およびZ-Y平面において直線フィットし、χ²/ndfでの カットをかけてトラックの候補を選別する。
 - > 2つのトラックが同じSpace Pointを共有する場合、χ²/ndfが小さいトラックに属 させる。
- トラック候補をクラスターを用いて再フィットする(トラックフィット)

SCT検出器の位置補正

- SCTモジュールの内部精度は数µmの精度であり、内部位置補正は必要ない。
- SCTモジュールの位置分解能は23μmであり、シリンダーへの取り付け精度 は50-100μm程度であるために、位置補正を行う。

検出器のずれの自由度は6である。(x,y,zの平行移動 および オイラー角) →468×6=2808 自由度のパラメータを最適化する必要がある。

SCT検出器の位置補正

以下の方法でトラックの残差を求め、位置補正の効果を評価する

- トラックがχ²/ndf < 3 を満たす</p>
- ▶ トラックに伴うクラスターが10以上存在する
- ▶ 残差を求めるモジュールのクラスターをトラックから除外し、再度フィットする
- ➢ SCTモジュール面でのトラックとクラスターの距離を残差とする

SCT検出器の位置補正

SCT検出器の検出効率

- トラックが χ²/ndf < 40 を満たす</p>
- クラスターをトラックから除外し、再度トラックをフィットする
 (リフィットトラック)
- リフィットトラックが χ^2 /ndf < 6 を満たす</p>
- ▶ リフィットトラックに伴うクラスターが10以上存在する
- ▶ リフィットトラックの位置がモジュール端および異常ストリップ (noisy, dead, etc...)から2 mm以上離れている

⇒ ヒット予想点より±2 mmの範囲内でクラスターを調べる

(ヒット観測点)

(検出効率)=(ヒット観測点の数)/(ヒット予想点の数)

remove all h

cluster

track

SCT検出器の検出効率

結論

- SCT検出器の性能評価
 - ➤ SCT検出器の位置補正の結果、残差分布のσ~40µm 程度 まで改善した
 - ▶ 各SCTモジュールについて検出効率を見積もり、Top・Bottom ともに99%以上の検出効率が得られた

今後の予定

- 地下ATLAS実験場での宇宙線テスト準備
 - ▶バレルSCT検出器は地下のATLAS検出器にすでに組み込ま れている
 - ▶5月以降に予定されている地下ATLAS実験場での宇宙線テス トに備え、準備を進める

Backup

Number of Spacepoints

Number of Tracks

no alignment ly0 & ly1

no alignment ly2 & ly3

local alignment ly0 & ly1

22

local alignment ly2 & ly3

Geant 4 simulation ly0 & ly1

24

Geant 4 simulation ly2 & ly3

Efficiency map ly0 & ly1

Efficiency map ly2 & ly3

Efficiency Diff b/w link 0 & link 1

Diff b/w link0 & link1

h_ModEff_link0_	vs_link1
Entries	435
Overflow	6

Efficiency detail ly1

Kalman Filtering

