ATLAS検出器におけるFake Leptonの割合と Higgs・SUSY粒子探索に与える影響の研究

麻植健太・陣内修・佐々木貴之 田中純一・浅井祥仁・小林富雄 (ICEPP and KEK)

2005/9/14

Motivation

- SUSYでは1 lepton+jetsが有望channelである。しかし、LHC で はQCD multi-jet eventの断面積が非常に大きいため(~µb)、 jetがleptonにmissIDされてしまうbackgroundが無視できない可 能性がある。
- Higgs探索ではVBF H→ τ τ が有望channelである。
 しかし、これもQCD multi-jetが τ やleptonにmissIDされてしまう
 backgroundが無視できない可能性がある。

これらのbackgroundの見積もりが必要

Contents

- Fake Leptonの候補
- Fake Leptonの割合の評価
- LeptonのEfficiencyの評価
- Backgroundの評価 (Fast Simulation

Full Simulation

Fake Lepton の候補

Electron

Fake leptonの例

麻植健太

Efficiency and Rejection

Fake rate= 1/Rejection Factor

= miss ID lepton/reconstructed Jets

Fake rateはreconstructed jetsのなかにmissIDされたleptonが含まれる割合 として定義した。Reconstructed jetとしてlight flavor起源とheavy flavor起源 ではmiss ID leptonの発生過程が異なる。

light flavor ← punch-throughなど heavy flavor (bやc) ← semi-leptonic decayなど よって、この2通りを考えて、それぞれのfake rateを見積もる。

Fake rate

fake rate 10⁻³~ 10⁻⁴ Jet、leptonのPtが大きくなるにつれてfake rateは小さくなる傾向がある。 Muonは統計が少ないためばらついている。 Heavy flavor起源のほうがfake rateが大きい。

Efficiency vs Fake rate (Electron)

2005/9/14

Efficiency vs Fake rate (Muon)

Muonのisolation条件を 5,10,20,30GeVで変化させた plot。

統計が足りないが、おおよそ 10~20GeVが適当なisolation 条件となっている。

Fake rate まとめ

 $\times 10^{-4}$

Pt(GeV)	jet→e	$jet \rightarrow \mu$	bjet→e	bjet $\rightarrow \mu$	bjet $ ightarrow au$
15-35	6.7 ± 0.8	2.3 ± 0.5	19 ± 7.7	0+3.2	25 ± 9.0
35-50	6.0 ± 1.3	0.6 ± 0.4	10 ± 7.2	0+5.1	10 ± 7.2
50-80	3.8 ± 1.0	2.2 ± 0.7	3.7 ± 0.4	7.5 ± 5.2	3.7 ± 3.7
80-130	3.8 ± 1.0	0.3 ± 0.3	0+4.2	0+4.2	0+4.2
130-200	3.4 ± 1.0	0.6 ± 0.4	0+5.2	5.2 ± 5.2	0+5.2

Background の評価

Full Simulationにより、Fake rateは 10⁻³~10⁻⁴であることがわ かった。

→ Fast Simulationに適用して、QCD multi-jetsが fake leptonを含んだ場合のBackgroundを見積もる。

SUSY QCD multi-jets

QCD multi-jets $\sigma \sim 190$ nb(4jet以上,pt>50GeV)

BackgroundはQCD multi-jetを 今回求めたFake rateでleptonに 置き換えたもの。 low Meff領域(~1TeV)の backgroundとなるがシグナル に比べて小さい。 (Meff=missEt+Σpt)

VBF $H \rightarrow \tau \tau \rightarrow h \nu l \nu \nu$

Summary

- Fake Rateは10⁻³~10⁻⁴のオーダーである。
- Electronのisolation条件は5~10GeVが適当である。Muonについては10~20GeVが適当であるように見えるが、統計を上げる必要がある。
- 今回得られたFake Rateの範囲ではMuon, ElectronのFake はSUSY 1lepton modeの大きなbackgroundにはならないこ とがわかった。
- しかし、VBF processではFake leptonは大きなbackground となる可能性がある。これを小さくするために、更なるLepton IDの研究が必要である。

Muonはminimum ionizationをして、最後にMuon Chamber にhitする。

Efficiency vs Fake rate

electoron

muon

2005/9/14

日本物理学会@大阪市立大学 麻植健太 16

Atlas detector

Inner

Si strip,pixel , TRT ,solenoid σ (pt)/pt~0.4pt

EMCAL

LAr, Accordion σ(E)/E~10%/√E+200MeV/E+0.7%

HCAL

LAr, Tile

Muon detector

Troidal magnet σ (pt) ~2.5%@100GeV

2005/9/14

$VBF H \rightarrow \tau \tau \rightarrow h \nu l \nu \nu$

bbjj→ltaujj jjjj→ ltaujj がbackgroundになる。

 $30 \text{fb}^{-1} \text{COM} \tau \tau$ distribution $110 \sim 135 \text{GeV} \text{Cestimated cross section signal} \sim 0.4 \text{fb}$ background $\sim 0.2 \text{fb}$

Backgroundとしてかなり大きい。

2005/9/14