LHC加速器ATLAS実験におけるτレプトン対に崩壊 するヒッグス粒子探索に関するシミュレーション

Introduction

Motivation

Tau identification

Requirement for Rejection

conclusion

<u>中村浩二(筑波大物理)</u>,

田中純一,浅井祥仁, 神前純一, 陣内修, 原和彦

Introduction(1) ... LHC >LHC @ CERN

Introduction(3) ... Higgs search

Production process

- ➤ VBF process 特徴
- ✓ gluon fusion に次ぐ大きなcross section ^も
- ✓ High Pt のForward jet が存在する。
- ✓ Jet の少ないrapidity gap がある。

Mass reconstruction

τ のPtに対して、mass が十分小さいので、v の 方向を、τ の方向と近似 して、

 $\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}} = \mathbf{v}_{\tau_1} \left| E_{T \ had}^{miss} \right| + \mathbf{v}_{\tau_2} \left| E_{T \ lep}^{miss} \right|$

Signal Significance

VBF H->tau tau は、 単独で、5o を超える。 軽いHiggs でもっとも significance が高い

very important to increase statistics.

 \rightarrow We have developed tau identification optimized low Pt region

Tau identification

Tau candidates are selected
based on track (finding Isolate
1 track or 3 tracks)

 \diamond We also use cells information .

We also required isolation there is no more Pt>2GeV Find Pt >5 GeV tracks track in $\Delta R < 0.4$. only 1 track 3tracks in $\Delta R < 0.1$ (Find two more Pt>2GeV tracks) Find a seed cell associated with this track, and make Cluster (The seed is defined as a cell with larger than 6σ of Noise near the track) reconstruction identification "Narrowness" cut is applied for identification (I will talk in later slides)

> Energy deposit on EM calorimeter

ATLASのEM calorimeter は、 presampler と、3つのsampling 層 からなる。

Sampling 2が、main component で、 $\Delta\eta x \Delta \phi$ =0.025x0.025と、 segment が細かい。

PreSampler

phi

04

0.4 eta We use cell based narrowness definition not ΔR .

> Cell-based narrowness

Narrowness distribution after 1prong/3prong selection

We can enhance the signal against the BG by setting narrowness threshold. For example 0.7/0.6(1prong/3prong)

50%のefficiency が得られる。Rejectionに関しては、 full simulation に問題があり、改善の可能性がある。

Requirement for Rejection

> QCD Background

✓W+3jets: Wjjj -> Itaujj
Jet をtau に間違えるもの。
TauID のrejectionに対する要求を与える。

✓ 4jets : jjjj -> ltaujj
Jet をtau に間違え、さらにもう一つの
Jet をleptonに間違える。
2重のsuppression だが、oが大きい
-> 後のtalk

Wjjjはserious なBGになる可能性がある。Rを現在の3-5倍にする必要がある。

Conclusion

◇VBF process で生成し、tau レプトン対に崩壊するHiggs 粒子 探索で、統計を増やすため、low Ptのtauにoptimizeした、track base のtauIDのアルゴリズムを開発中である。

◆Efficiency に関しては、50%程度出ているが、full simulation の問題から、Rejectionに関しては、十分な性能が出ていない。

◆新しいQCD backgroundの研究として、W+3jetsや、4jetsの cross section を見積もっている。今後統計を増やす必要がある が、serious なbackgroundになる可能性がある。

◆これらのQCD background をsuppress するため、Rejection factor を、現在の3-5倍よくする必要がある。

Back Up

Signal selection

- (1) electron Pt>25GeV,muon Pt>20GeV
- (2) Tau jet with Pt>40GeV $\Delta R > 0.7$ (from lepton)
- (3) Forward Jet : At least 2 Jet , Pt>20GeV(Leading 40GeV)
- (4) Forward Jet : $\eta_1 * \eta_2 < 0, |\eta_1 \eta_2| > 4.4$
- (5) η₁+0.7< η_{l,τ}<η₂-0.7
- (6) $|\cos\phi_{lh}| < 0.9$ for missing Et
- (7) Transverse mass between lepton and missing energy less than 30GeV
- (8) Missing Et > 30GeV
- (9) Invariant mass of the tagged forward jets larger than 700GeV
- (10)Central Jet Veto : There is no Pt>20GeV jet in η_1 +0.7< η < η_2 -0.7

As a full simulation problem...

Z+njets background

Mtautau distribution

