LHC計画ATLAS実験における 超対称性の発見の研究

東京大学素粒子物理国際研究センター 佐々木貴之、小林富雄、浅井祥仁、田中純一

Motivation

- 階層問題
 - GUT Scale(10¹⁶GeV) EW Scale(10²GeV) の2つのScale があるのは不自然 upling Const
- Fine tuning
 - radiative correctionでHiggsの 質量が発散
- 力の統一
 - SUSYが数TeV付近にあれ ば、GUT Scaleでカが統一
- ダークマター
 - LSPはダークマターの候補

SUSY & Background

Process	Event rate at 2 × 10 ³³ cm ⁻² sec ⁻¹	イベント数 L=10fb ⁻¹
QCD(multijets)	HLT Triggered 40Hz	10 ⁸
W+Jets(W \rightarrow I ν)	10Hz	10 ⁸
Z+Jets(Z→II)	1Hz	10 ⁷
tt	1.6 Hz	107
bb: P _T >10GeV	200 KHz (HLT 10Hz)	2 × 10 ¹² (10 ⁸ inc. di−m)
SUSY(1TeV)	20/h	5 × 10 ⁴

•LHCでは<mark>SUSY</mark>の事象が大量に起こる

•その反面、バックグランドも多く、バックグランドをいかに コントロールするかが大切

LHCでのSUSYの生成

- LHCはハドロンコライダーなので、*§§*,*qq*,*§q* が大量に
 生成される
- バーテックスは強い相互作用なので、cross sectionは \tilde{g}, \tilde{q} の質量で主に決まる(パラメータに強くよらない)

SUSY粒子の崩壊

- 軽い粒子へと多段崩壊し複数 $\max(\widetilde{g},\widetilde{q})$ のジェットを出す (high) Pt jet min $(\widetilde{g}, \widetilde{q})$ • LSP($\tilde{\chi}_1^0$) tamissing• SUSYのイベントトポロジーは Pt jet multijets+missing Et (+leptons) $\widetilde{\chi}_{1}^{+}$ $\widetilde{\chi}_{2}^{\circ}$ jet このトポロジでSUSYを探す $\widetilde{\chi}_{1}^{\circ}$ lepton missing Higgs->bb
 - 0 lepton mode
 - Leptonが無いモード 分岐比が多い
 - 1 lepton mode
 - High pt isolated e/μが1つあるモード

バックグランドの評価

- multijet+missingEt(+leptons)を
 含むものが主なバックグランド
 - tt(wのleptonic decay mode)
 - σ~1nb
 - W+Njets (W \rightarrow I ν)
 - σ ~10nb
 - Z+Njets $(Z \rightarrow \tau \tau / Z \rightarrow \nu \nu)$
 - σ ~1nb
 - QCD(high Pt multijets)
 - σ ~ μb

- SUSY
- Min($\widetilde{g}, \widetilde{q}$)=1TeV
 - $\sigma \simeq 1 \text{pb}$
- Min(\hat{g}, \hat{q})=1.5TeV
 - $\sigma \simeq 100$ fb
- Min(g, q)=2TeV
 - σ ~10fb

SUSYのクロスセクションはバック グランドよりも4~6桁小さい

バックグランドの生成

- パートンシャワー(PS)は高いPtの 領域で良い近似ではなく、under estimation
- マトリックスエレメント(ME)は CollinearやSoftな領域で発散する
 - CollinearやSoftな領域ではPSが 良い近似

QCD Background

- QCDのバックグランドは2種類
 - Real missing
 - b,cのsemileptonic decay から出る v がmissingをつくる

• Fake missing

В

- Energyのmiss-measurement がmissingを作る
- QCDは σ が大きいので、
 miss-measurement のテール
 からの寄与がある

Fake missing

QCD BG Missing Et miss-measurement

- MEを用いて4 jet sample を生成
- Full Simulationで測定し た σ を 用いて、 Fast Simulationで評価
 - Missing Etのresolution
 - Crack,forward領域
 - resolutionが悪い
 - Non Gaussian Tailがある可 能性(調査中)

- MEで4 jetsを作ったのに、parton showerにより
 5 jetsになっている
- MEの5jetsとdouble countなのでvetoする

0 lepton mode

1 lepton mode

- SUSYのカット
 - 1 lepton
 - Missing Et>100GeV
 - 4本以上のハードジェット Pt>100GeV、Pt>50GeV×3本
 - Transverse Sphericity >0.2
 - Transverse mass >100GeV

QCD,Z $\rightarrow \nu \nu \sigma$ のバックグランド をコントロール

Lepton fakeのstudyが必要

まとめと課題

• MEによるバックグランドの評価

- PSによるBG評価の数倍
- 0 lepton modeよりも1 lepton modeのほうが discovery potentialが高い

Lepton fakeのstudyが重要

• 課題

- Missing Etのresolution、テールの調査
 - Crack,forward領域
- カットパラメータの最適化

