Vector Boson Fusion過程を用いた ヒッグスのスピンとCPの測定

東大素セ、KEK^A 兼田 充、小林 富雄、 神前 純一^A、浅井祥仁、田中 純一

日本物理学会 2005年秋季大会

2005年9月14日

Outline

- Vector Boson Fusion 過程の H->WW->lvjj
- ヒッグスの崩壊におけるスピンとCPに 関係するパラメーター
- MC Event Generation
- イベントセレクション
- 結果
- まとめ

Introduction

- LHC-ATLAS実験において、ヒッグス粒子が発見された後、 その粒子の性質について調べることが次の課題である。
- M_H>2M_Wの時、ヒッグスは主に、W+W-またはZZペアに 崩壊する。
 この崩壊モードの場合、発見は容易である。
 (L=30fb⁻¹ 20σ以上のsignificance)
- ヒッグスのスピンやCPについてのstudyとしては、
 H->ZZ->4lという崩壊過程におけるものがある。
 C. P. Buszello *et al.*, hep-ph/012396
- 今回私達はH->WW->lvjjという崩壊過程でのヒッグス 粒子のスピン、CPの測定について研究した。

VBF H->WW->lvjj

- ヒッグスの質量が140GeV以上で WWへの崩壊が非常に大きい。
- Vector Boson Fusionについての 今までの私達の研究を用いること が出来る。
- この崩壊過程ではneutrinoが一つしか存在しないので値を解くことが出来る。従って事象を完全に再構成できるので、H->ZZ->4l、H->γγ、H->ττ、と並ぶ重要なチャンネルである。

Parameters Sensitive to Spin- and CP-eigenvalues of the Higgs Decay Direction of the child in the V rest frame

- φ:: ヒッグス粒子の静止系において、二つのW粒子から崩壊した それぞれ2つのフェルミオンが作る平面の間の角度。
- **θ:: W粒子の静止系におけるフェルミオンの運動量の方向と、** ヒッグス粒子の静止系におけるW粒子の運動量の方向間の角度。

これらの角度はヒッグスのスピンとCPに対してsensitiveである

The Decay Plane Correlation Function Ref. Charles A. Nelson, Phys. Rev. D 37,1220(1998) ϕ に関しては次のような関数でフィット出来る $F(\phi) = C(1 + \alpha \cos \phi + \beta \cos 2\phi)$

しかし、jetの電荷を知ることは出来ないので次のような関数になる $F^*(\phi) = (F(\phi) + F(\pi - \phi))/2 = C(1 + \beta \cos 2\phi)$

従って、このモードではβのみ測定することが出来る。

2005年9月14日

The Polar Angle Distribution

- θ に関しては次のような関数でフィットすることができる: $G(\theta) = T \cdot (1 + \cos^2(\theta)) + L \cdot \sin^2(\theta)$
 - L:W粒子の振幅のたて成分 T:W粒子の振幅の横成分
- 新たにRを:

R := (L - T) / (L + T)

と定義。

これはたて成分と横成分の割合を表す量である。

MC Generations

- **Signal:VBF H -> WW -> lvjj**(**l = e,**µ)
 - $\sigma^*Br(H->WW) = 842fb (M_H = 160GeV) (Pythia)$

 $- \sigma^*Br(H->WW) = 836fb (M_H = 170GeV) (Pythia)$

- Background:
 - ttbar $\sigma = 488pb$ (Pythia)
 - W+4jets

σ*Br(W->leptonic decay)= 134pb

(Alpgen + Pythia)

この研究はFast simulationを用いて行った。

Event Selection

- top veto
 - Number of b-jets = 0(B.G.でtopを含むものを落とすためにtopから崩壊する bottom粒子が無いことを要求)
- Mini jet veto
 - 二つのforward jetの間の領域に20GeV以上のjetがforward, central jet以外に 存在しないことを要求

2005年9月14日

q(forward jet)

Selection (W->Iv Reconstruction)

- neutrinoの横方向の運動量はmissing Etとして計れるが、z 方向(ビーム軸方向)の運動量E_{vz}直接は計れないので、観 測量から決めてやらなければならない。
- Conventionalな方法として E_{vz} をmissing Etとleptonの運動量 を用いて、ニュートリノとレプトンからWをリコンストラクション した際に $M_{w->lv}$ = 80GeVとなるように決めるものがある。 この方法は2次方程式を導くことになるので二つの解 $E_{vz1}, E_{vz2}(|E_{vz1}|>|E_{vz2}|)$ が存在する。 Conventionalな方法では E_{vz2} を選んでいる。

 M_{lvjj} and $\cos\theta$ using this mehod (signal only)

M_{lvjj}の分布は高い方にtailがあり, cosθ₁の分布は負の方向に偏ってしまっている。

この方法によって得られたE_{vz} は実際のE_{vz}と大きく違っていて角度 分布に影響を及ぼしてしまっている。

Selection

(W->Iv Reconstruction)

我々が開発した新しい方法

- ヒッグス発見後の測定モードとしてはヒッグスの質量の情報をインプットとして使える。つまりM_Hをfixしてmissing E_T、leptonの運動量、二つのcentralジェットの情報からE_{vz}を得る。
- Conventional method同様
 E_{vz1}, E_{vz2}(|Ev_{vz1}|>|E_{vz2}|)の
 二つの解がありE_{vz2}を選んだ。
- 二つの方法を比べた結果、
 新しい方法の方がより正しいE_{vz}
 を得られるという結果が出た。

 E_{vz} (generator) – E_{vz} (reconstructed)

また、ヒッグスの質量に5GeV程度の不定性があった場合でも、
 角度分布に対する大きな影響は出ないことを確認した。

Selection (W->lv Reconstruction)

- この方法によりE_{vz}が得られなかった場合(方程式が解けない場合)そのイベントは除く。
- ・ 得られた E_{vz} を用いて Wをleptonとneutrinoから 再構成し、その 質量に対して $60GeV < M_{lv} < 100GeV$ のCutをかける。

Event Statistics

Expected cross sections after selections.

	M _H =160GeV	M _H =170GeV
Signal	1.19fb	1.73fb
ttbar	<0.01fb	<0.06fb
W+4jets	0.49fb	1.1fb

Fitting function: $F^*(\phi) = C(1 + \beta \cos 2\phi)$ Populta of 8 [30fb-1](gigned only and error is statistical only.)

Results of p [3010 ⁻¹](signal only and error is statistical only)						
	M	Fitting value	SM	Spin 1 CP +/-1	Spin 0 CP -1	

	$\mathbf{M}_{\mathbf{H}}$	at 30fb ⁻¹	SM	Spin 1,CP +/-1	Spin 0,CP -1
	160GeV	0.16+/-0.23	0.17	0	-0.25
	170GeV	0.06+/-0.19	0.14	0	-0.25
2	005年9月14日		Spin and CP of the	e Higgs	15
			M.Kaneda		

Results (cosθ)

Fitting function: $G(\theta) = T \cdot (1 + \cos^2(\theta)) + L \cdot \sin^2(\theta)$ R := (L - T) / (L + T)

Result of R [30fb⁻¹](signal only and error is statistical only) $R = 0.70+/-0.32(M_H = 160GeV)$ $R = 0.54+/-0.30(M_H = 170GeV)$

2005年9月14日

- Higgs Mass Constraint Method を考案し、H->WW->lvjjにおいて Conventional Methodより正確なE_{vz}を得ることが出来た。
- LHC-ATLAS実験において、ヒッグスがスピン0の場合、H->WW >lvjj 過程を用いて、CPがeven かoddか識別可能。

今後の課題

- Selectionについてはまだ改良の余地がある。
- tbjのような他のB.G.についても調べてみる必要がある。
- ヒッグスの質量が小さい領域でもこの方法でスピン、CPが測定できる 可能性があり、研究する必要がある。
- スピン1やCP oddのヒッグスについての研究。
- Forward jets の角度相関もヒッグスのスピン、CPに対してsensitiveな 値で、これについても今後研究する。

Back Up

2005年9月14日

W->Iv Reconstruction

19