

LHC ATLAS実験における ブラックホール探索

<u>田中純一</u>、山村大樹^A、浅井祥二、上田郁夫、 真下哲郎、神前純一^B、田中礼三郎^C、 他アトラス日本物理グループ

<u>東大素セ</u>、東大理^A、高工研^B、岡山大理^C

Contents

- Introduction
 - Large Extra Dimensions
 - Black Hole
 - Simulation
- Event Generator
 - Production
 - Decay
- Selection Criteria
- Mass Reconstruction

- Discovery Potential
- Event Display
- Summary

All our results are preliminary.

Introduction

- Large Extra Dimensions
 - N.Arkani-Hamed, S.Dimopoulos, G.Dvali PLB 429 (1998) 263
 - One of theories of "Extra Dimensions."
 - Hierarchy problem 階層問題
 - EW scale ~ 10^{3} GeV <- -> Planck scale ~ 10^{18} GeV
 - Need a fine tuning to solve this problem.
 - Planck scale can become a TeV scale.
 - Solve the hierarchy problem automatically.
- Black hole (BH)
 - "BH mass > Planck scale(M_p)" \rightarrow BHs can be produced.

If M_p is ~TeV, LHC (√ s=14TeV) can produce BHs!

$$d < \mathbf{R}_{s} \quad R_{s} = \frac{1}{\sqrt{\pi}M_{P}} \left[\frac{M_{BH}}{M_{P}} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2}\right)\right]^{\frac{1}{1+n}}$$

 $R_s = \sim 10^{-20}(m) < R_n \sim 10^{11}m(n=1) \text{ n} \sim 10^{-17}m(n=7)$

- When an impact parameter (d) is smaller than Schwarzschild radius (R_s), a BH is produced.
- A geometric cross section of BHs is

Black Hole

$$\sigma(M_{\rm BH}) \sim \pi R_{\rm S}^2 = \frac{1}{M_P^2} \left[\frac{M_{\rm BH}}{M_P} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2}\right)\right]^{\frac{2}{1+n}}$$

 $\rightarrow \sigma \sim O(100) pb \rightarrow Large cross section!$ Expressions, which are used here, are valid at $M_{BH} >> M_{p.}$ (厳密に言えば) (~10⁵event/yr@L=10³³cm⁻²s⁻¹.) S.Dimopoulos, G.Landsberg PRL **87** (2001) 161602

Simulation

- Signal samples BH → PYTHIA → ATLFAST
 - We have developed our original BH generator.
 - Initial state parton showers, hadronisation and decay are performed using PYTHIA 6.2.
 - Q²_{ren}=(Generated BH mass)²
- Background samples
 - jj, Wj, Zj, tt, WZ, WW, ZZ, γ j, γ V, $\gamma\gamma$
 - "j'' = quark, lepton, gluon by PYTHIA 6.2.
 - All samples are processed through the *ATLFAST*. (Low luminosity condition)
- PDF = CTEQ5L

Generator – BH decay 1

- We require the following conditions for the decay of a BH.
 - Charge conservation
 - Momentum conservation
 - Color conservation
 - The even-odd number of fermions for the spin conservation
 - A BH Lifetime is assumed to be zero.
 - Assumption of Boltzmann distribution for the energy spectrum of decay products
 - Assumption of democratic property in the decay products

 BH evaporation is assumed to be "Blackbody radiation" with the Hawking Temperature T_H.

$$T_H = M_P \left(\frac{M_P}{M_{\rm BH}} \frac{n+2}{8\Gamma(\frac{n+3}{2})}\right)^{\frac{1}{n+1}} \frac{n+1}{4\sqrt{\pi}}$$

Energy of decay products are ^{0.025} determined by the Boltzmann Energy of decay products (GeV) distribution with T_H.

0.225

0.175

0.15

0.125

0.075

0.05

0.1

0.2

Problem: Other conservation laws distort a distribution from a shape of the Boltzmann distribution.

 $M_n = 1 \text{TeV}, n = 3$

<E>~500GeV

Generator – BH decay 3

- BH decays promptly into ordinary SM particles.
 - BH has no time-evolution.
- Democratic property
 - Species of decay products are determined democratically.

Degree of freedom: Charge, spin and color.

Particle	Degree of Freedom	Assigned Probability
g (gluon)	8	0.0690
W	6	0.0517
Z	3	0.0259
γ	2	0.0172
lepton (e, μ, τ)	4	0.0345
neutrino $(\nu_e, \nu_\mu, \nu_\tau)$	4	0.0345
quark (u, d, c, s, t, b)	12	0.1034
Higgs	1	0.0086

Generator – BH decay 4

However,

Due to other conservation laws, the "democratic" property is not achieved. $M_n = 1 \text{TeV}, n = 3$

Selection Criteria

- P_t cut for the rejection of particles from ISRs and specrators.
 - $P_t > 30 \text{GeV}$ for μ , e
 - $P_t > 50 \text{GeV}$ for γ , jet
- Events must contain at least 4 particles (e,μ,γ,jet) with E > 300GeV and at least 1 particle is either e or γ.
- R₂ < 0.8
 - R₂ is an event-shape parameter.
 - $R_2 \rightarrow 0$: Spherical event
- Missing $E_t < 100$ GeV for BH mass reconstruction

Mass Reconstruction

- Effects of missing E_t : Fig A.
- Effects of particle from ISRs and spectators. : Fig B.
 - Remove these particles using the generator information. \rightarrow Fig C.

Mass Distributions

- As M_p becomes larger, the excess of events becomes smaller.
 - Signal+Background
 - Background

 $n=3, \int L = 30 \, fb^{-1}$

Discovery Potential

Discovery potential depends almost only

$M_{p} < 4TeV$

BH will be discovered with $\int L = 100 \, \text{pb}^{-1}$, which corresponds to ~ 1 day !

Discovery Potential

- M_{BH}^{min}>M_p + 1TeV の条件を入れた場合
- More *L* is required. But the excess will be observed <u>a few days</u> <u>of running</u> for M_P up to a few TeV.

Event Display

ATLAS Atlantis

w/o pile-up

日本物理学会 2003年秋季大会@宮崎、9月9日

- Black hole generator
 - Need to add more properties:
 - "Greybody" factors —
 - Time evolution of BH
 - M_{BH} and T_{H} depends on "t".

- Expressions, which are used here, are valid at $M_{BH} >> M_{p}$.
 - $M_{BH} < \sim 5 M_p \rightarrow$ need new theories! ... String balls ...

String balls have a similar properties as BHs.

(S.Dimopoulos and R.Emparan PLB **526** (2002) 393)

Study methods to measure "large extra dimensions."

Summary 2

- We have developed our black hole generator.
 - Use simple assumptions
 - Known limitations
 - Some assumptions are not perfectly achieved due to other conservation laws.
 - Classical approximations are used at the M_{BH}~M_p.
- Discovery potential : preliminary results
 - $M_p < \sim 4 \text{ TeV} \rightarrow < \sim 1 \text{ day}$
 - $M_p < \sim 6 \text{ TeV} \rightarrow < \sim 1 \text{ year}$

