Jet Reconstruction in the ATLAS Calorimeters

Michiru Kaneda (University of Tokyo) On behalf of the ATLAS collaboration 30/Oct/2006 @ Hawaii

Outline

- Introduction
- ATLAS Calorimeters
- Reconstruction and Calibration Scheme
 - Clustering
 - Jet Reconstruction Algorithms
 - Jet Energy Calibration
 - Global and local approach
 - **■** In situ Calibration
- Summary

Introduction

► We want to calibrate Jet Energy Scale within ~1% for precise Top Mass measurement, SUSY search and so on...

LHC produce large amount of ttbar events More than 8 million ttbar produced per year at low luminosity (10³³cm⁻²s⁻¹)

->For top mass measurement, systematic error become dominant and a dominant error is Jet Energy Scale Uncertainty::

b quark energy 1% uncertainty $-> \delta M_{top} \sim 0.7 GeV$ light quark energy 1% uncertainty $-> \delta M_{top} \sim 0.3 GeV$

Effective Mass = MissEt + $\Sigma_i(P_T \text{ of i th Jet})$ (i=1~4) is used for SUSY search

Introduction

- There are many effect to consider in Jet Reconstruction::
 - Detector effects
 - Non compensation
 - Dead material
 - Electric noise
 - Energy leakage
 - **■** Non uniformities
 - Magnetic field effects
 - Jet reconstruction Algorithm effects
 - \sim Cone, K_T
 - Out of Cone energy losses
 - Physics effects
 - Jet types (light quarks, gluons, b-jet or τ -jet)
 - Parton shower and fragmentation
 - Underlying events
 - ► Initial state radiation and final state radiation
 - Pileup from minimum bias events
- We must apply the corrections for these effect as much as possible

ATLAS Calorimeters

EM Accordion Calorimeters Hadronic Tile Calorimeters (Barrel and End Cap) (Barrel and Extended Barrel)

Hadronic LAr End Cap Calorimeters

Forward LAr Calorimeters

EM Accordion::|η|<3.2

- ► Pb/LAr 24-26 X₀
- ► 3 longitudinal sections 1.2λ
- $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$

Central Hadronic:: $|\eta| < 1.7$

- Fe/Scintillator 3 longitudinal sections 7.2λ
- \triangle Δη x Δφ = 0.1 x 0.1 (sampling 1 and 2)
- $= 0.2 \times 0.2 \text{ (sampling 3)}$

► Hadronic End Cap::1.5< $|\eta|$ <3.2

- Cu/LAr 4 longitudinal sections
- $\Delta \eta \times \Delta \phi = 0.1 \times 0.1 \ (1.5 < |\eta| < 2.5)$

$$= 0.2 \times 0.2 (2.5 < |\eta| < 3.2)$$

Forward Calorimeter:: $3 < |\eta| < 4.9$

- ► EM Cu/LAr and HAD W/LAr
- 3 longitudinal sections
- $\Delta \eta \times \Delta \phi = \sim 0.2 \times 0.2$

EM LAr + TileCal resolution and Linearity
$$\frac{\sigma}{E} = \left(\frac{41.9\%}{\sqrt{E}} + 1.8\%\right) \oplus \frac{1.8}{E} \quad \text{linearity} < 2\% \text{ 10-300 GeV}$$
obtained at 1996 Combined TestBeam, $\eta = 0.35$
(ref. NIM449(2000) 461-447)

Reconstruction and Calibration Scheme

Clustering

There are two methods

- Calorimeter Towers (2D method)
 - Tower of dimension $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
 - Compensate towers with negative energy with its positive neighbors.
- 3D Cell Clusters (3D method)
 - Seed Cell:: $|E/\sigma_{noise}| > T_{seed}$
 - ► Neighboring Cell to expand:: $|E/\sigma_{noise}| > T_{neigh}$
 - \sim Cells to expand::| E/ σ_{noise} |> T_{used}

 - can suppress noises better

3D Cell Cluster for 120GeV pion in EMEC and HEC (2002 Test Beam Data)

Noise Suppression Performance

- This plot shows the energy left in the EMEC calorimeter
- 2 sigma symmetric Cut means::
 - Remove all cells with $|E| < 2\sigma_{\text{noise}}$
- 3D Cell Clusters show better noise suppression

CaloTowerNoise
2 sigma symmetric Cut
3D Cell Cluster

Jet Reconstruction Algorithms

 \blacksquare Two algorithms, Cone and K_T are being used in ATLAS

Cone Algorithm (Seeded Algorithm)

- \blacksquare E_T Seed::2GeV
- Collect neighbors around a seed in $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$
 - AR=0.7::To avoid fragmentation loss for low Pt jets
 - ► ΔR=0.4::Necessary at high luminosity and to separate overlapping jets
- Split and Merge
 - Merge two jets if overlapping energy is more than 50% of the least energetic jet energy.

K_T Algorithm

- For each cluster i:
 - Define $d_{ii}=p_{Ti}^2$, $d_{ii}=\min(p_{Ti}^2,p_{Ti}^2) \times \Delta R_{ii}^2/D^2$
 - Then find d_{min} (=the smallest member of $\{d_{ii}, d_{ij}\}$)
 - $If d_{min} = d_{ii} -> jet$
 - ► If $d_{min} = d_{ij}$ -> merge i and j
- ► D::paremeter "Jet Size" = 1
- The shape of the jet is not fixed a priori

Jet Response Uniformity

Total thickness in labs of the ATLAS calorimetry as a function of pseudrapidity

Calorimeter response depends on:

- dead material and gaps
- level of non-compensation

The total thickness of the active calorimeters is close to or larger than 10λ over the full coverage up to $|\eta|$ =4.9

There are the amount of the dead material in front of the calorimeters and in the regions between the Tile and EM Calorimeters

Jet energy calibrated at EM scale /normalized to MC truth energy

Jet Energy Calibration to Particle Level (Global approach)

- This Calibration is for::
 - Correction for detector effects such as dead material and non compensation
- The calibration applies weights to the cells::
 - $= E_J^{rec} = \Sigma_i w_i Ecell_i$
- w_i is obtained by minimizing the energy resolution(χ^2) to the MC truth (MC particle jet)::
 - minimize $\chi^2 = \sum_i \{ (E_J^{rec}_i E_J^{MC}_i)^2 / E_J^{MC}_i^2 \}$
- Same weights are used for different algorithms.
- A factor $R(E_T, \eta) = E_T rec/E_T MC$ is applied to correct for residual non linearities and for algorithm effects

Jet energy resolution (Global approach)

- **■**Cone 0.7
- For $|\eta| < 0.7$ (Black Point in the left plots)

Before calibration

$$\frac{\sigma(E)}{E} = \frac{0.83}{\sqrt{E(GeV)}} \oplus 0.05 \oplus \frac{2.4}{E(GeV)}$$

After calibration

$$\frac{\sigma(E)}{E} = \frac{0.67}{\sqrt{E(GeV)}} \oplus 0.02 \oplus \frac{4.3}{E(GeV)}$$

► Linearity ± 2% in energy region 50-2000GeV

Local Hadron Calibration

- Local Hadron Calibration::
 - Calibrate 3D Cell Clusters before reconstructing the jets
 - Not depend on Jet Reco Algorithms
 - Based on MC information: for each cell EM energy, Escaped energy, Invisible energy, Non EM energy
- Classify the clusters to EM, Hadronic and Unknown by shower depth (λ_{clus}) and the energy weighted average over the cell density ($\langle \rho_{cell} \rangle$)
- Apply weights to "Hadronic" clusters (as function of the cluster energy E_{clus} and the cell energy density ρ_{cell})
- Apply Dead Material Correction, too

Larger energy density and Early part shower =>EM

Local Hadron Calibration cont.

Right histograms shows example of Local Hadron Calibration for 100GeV Pion.

► Red line:: EM scale

► Blue line:: Weighted

Black line:: Weighted with DM corrections

	EM scale	Weighted	Weighted+DM
Mean(%)	79.9	89.5	98.2
σ(%)	8.7	7.9	7.3
σ/Mean(%)	10.9	8.8	7.4

- Mean and resolution improve in every step
- Final deviation from beam energy only 1.8% consistent with expected out-of-cluster corrections

The ration of total energy reconstructed in clusters in a cone with $\Delta R < 1$ around the true pion direction over the true pion energy on each steps (100GeV Single Pion, $0.2 < |\eta| < 0.4$)

In situ Calibration

- This Calibration is for::
 - Correction for energy losses out of jet clustering
 - Correction for energy of physics effect such as underlying event, ISR and FSR
- Some methods are studied::
 - **W**->jj : use W produced by the top decay in the ttbar events
 - Very large statistics (More than 8 million ttbar produced per year at low luminosity $(10^{33}\text{cm}^{-2}\text{s}^{-1})$), $\sim 200\text{GeV}$
 - $Arr Z(->ee \text{ or } \mu\mu)+j: P_T \text{ balance or ETmiss projection method}$
 - ► It will also provide constraints on the b-jet energy scale, ~40-400GeV
 - $\sim \gamma$ +j : P_T balance or E_Tmiss projection method
 - Higher statistics but high QCD background
 - \blacksquare Multi Jets: use balance one high P_T jet with two or more lower P_T jets
 - uniformity check especially for very high energy jets

W->jj (in the ttbar events)

- Use ttbar events in which one W decays leptonically and another W decays hadronically (tt->WWbb->(lv)(jj)bb)
 - Clean trigger from the isolated lepton
- σ_{ttbar} (14.0TeV) = 800 pb (about factor 100 larger at LHC than at Tevatron)
- Use Cone 0.4 (because ttbar events are busy)
- Arr Calibration constants $\alpha_i(E_i) = E_i^{part}/E_i^{jet}$:
 - ► Obtained by constraint :: $M_W^{PDG} = \sqrt{(\alpha_1 \alpha_2)} M_{ii}$
- Right plot shows: E_{jet} (calibrated)/ E_{part} VS E_{jet} with MC calib = 1
- Bias is within 1% ($E_{iet}>40$ GeV)
- Huge effect below 40GeV
- Manage to retrieve $\alpha(E)$ to 1% with 1fb⁻¹

<u>Summary</u>

- Some different methods and algorithm for jet energy calibration and reconstruction are being studied.
- **■** 3D Cell Clusters show a good noise suppression.
- ► Calibration algorithms (default) to correct for detector effects give linearity with in 2% for E = 50GeV-2000GeV
- Local Hadron Calibration shows very promising results.
- In situ calibration strategies are being developed: W->jj can calibrate to parton level within 1% for E_{Jet} >40GeV.

Back Up Slides

Combined TestBeam (Central region)

EM LAr + TileCal resolution obtained at 1996 Combined TestBeam, η = 0.35 (ref. NIM449(2000) 461-447)

$$\frac{\sigma}{E} = \left(\frac{41.9\%}{\sqrt{E}} + 1.8\%\right) \oplus \frac{1.8}{E}$$

<u>linearity < 2% 10-300 GeV</u>

Fast K_T

- ► K_T algorithms are typically slow since speed scales with O(N³)
- It has been shown that they can be made faster by using nearest neighbour information (Cacciari, Salam hepph/0512210)
- FastK_T has been implemented in ATLAS and it also allows to skip the preclustering phase.

Jet Reconstruction Algorithm (Midpoint Algorithm)

Midpoint Algorithm (Implementation based on CDF approach)

- \mathbf{E}_{T} Seed::2GeV
- \blacksquare Cone precluster with radius 0.5 x $\triangle R$
- Add midpoints if preclusters i, j are separated $< 2 \times \Delta R$
- \blacksquare Cone jets of radius $\triangle R$ are searched
- Merge if > 50% of P_T of lowest jet is shared, else split

Weighting Schemes

- Method based on longitudinal energy deposit
- 1. Sampling Calibration
 - Weights calorimeter layers $(w_i) = f(Jet energy, eta)$
 - 8 or less parameters per fit depending on eta and energy.
- ► Methods based density Uses detailed on energy cell information -> more parameters in the fit
 - 1. <u>H1-Style</u> two steps procedure
 - Cell weights $(w_i) = f(Cell energy density)$
- Apply extra correction factor function of Ejet and eta to improve linearity and uniformity.
 - 2. Pisa Calibration
 - Cell weights (w_i) = f(Cell energy density, Jet energy)
 - Similar idea as above, use extra info of jet energy.
 - 3. Psuedo H1
 - Similar as H1-style. Not yet ready to provide jet energy scale.

Local Hadron Calibration::performance on CTB Monte Carlo (Linearity)

- Left plot::local hadron calibration (red::EM scale, black::weighted, mean from a Gaussan fit)
- Right plot::default method (red::EM scale, blue::weighted, mean of the distribution)
- ► Local Hadron Calibration shows 0.5-1% worse but this might be due to different definitions of the mean

Local Hadron Calibration

Mean of (E - E_{CallibHit}) / E_{CallibHit} • weighted energy • energy, EM scale -15 -20 4×10-1 1 2 3 4 5 6 10 20 30 Beam energy (GeV)

Default method

Local Hadron Calibration::performance on CTB Monte Carlo (Resolution)

- Left plot::local hadronic calibration (red::EM scale, black::weighted, relatice sigma from the Gaussian fit)
- Right plot::default method (red::EM scale, blue::weighted, RMS of the distribution divided by its mean)
- Both plots show improved resolution above 10GeV
- Numerical differences stem again mainly from different definitions (sigma vs. RMS)- default method is maybe a bit worse in resolution at high energies

Local Hadron Calibration Resolution (%)

Local Hadron Calibration(di-jet)

- Right histograms shows example of Local Hadron Calibration for di-jet sample.
- Using tow leading jets (K_T with D=0.6), 0.2< $|\eta|$ <0.4, and energy of the leading jets in the sample and region is about 150±40GeV

Red line:: EM scale

Blue line:: Weighted

Black line:: Weighted with DM corrections

	EM scale	Weighted	Weighted+DM
Mean(%)	75.3	84.1	93.5
σ(%)	5.5	5.8	6.0
σ/Mean(%)	7.3	6.9	6.5

- Mean and resolution improve in every step
- Final deviation from beam energy only 6.5% consistent with expected out-of-jet corrections

The ration of total energy reconstructed jet over the energy matched truth (also K_T with D=0.6) with $\Delta\eta$ <0.05, $\Delta\varphi$ <0.05

<u>γ+jet</u>

 P_T balance = $(P_T$ jet - P_T photon)/ P_T photon

To fit MOP with little sensitivity to tails: iterate a gaussian fit between $\pm \sigma$ around the most probable value

- Select isolated gamma
- \blacksquare Select Highest P_T jet
- Apply phi back-to-back cut

γ+jet cont.

Biases on P_T balance MOP for the different jet algorithms

Algorithms	Cone 0.7	Cone 0.4	Kt (D=1)
Parton level	-1 - 0%	-1 - 0%	-1 - 0%
Particle level	1 - 0%	-63%	6 - 1%
Recon level	-2 - 0%	-157%	7 - 2%

- Selection gives < 1% bias
- To estimate the mean E_T of UE, a study which use transverse interaction region is in progress.

γ+jet: Underlying Event

- Try to estimate the mean ET of UE from the event sample
- Select the "transverse region" of the event: avoiding 60 degrees in Phi around both photon and the jet (suggested by the SM group)

Mean transverse energy per $\eta \times \phi = 0.1 \times 0.1$:

Tower (RMS of el.noise ~140 MeV)	$16.17 \pm 0.03 \text{ MeV}$	
Recon tower protojet (tower preclusters after noise treatment)	$16.84 \pm 0.03 \text{ MeV}$	EM scale
Recon topocluster protojet (topoclusters)	$12.52 \pm 0.02 \mathrm{MeV}$	
Particle protojet (Σ particles per tower)	$19.91 \pm 0.02 \mathrm{MeV}$	3 GeV in cone 0.7

► Average UE level ~10% RMS of el.noise (very sensitive to noise suppression)