Evolution of V_{D} and I_{LEAK} of the ATLAS barrel SCT

(Version 8)

5 December, 2009

Paul Dervan, Joost Vosenbeld(University of Liverpool) and Taka Kondo (KEK)

[1]	Reproduction of the ATLAS ID-TDR results	2
[2]	Updating the basic parameters	3
[3]	New luminosity profile and ATLAS radiation level	4
[4]	New access conditions and cooling scenarios	5
[5]	Radiation damage models	6
[6]	Full depletion voltage V _D	8
[7]	Bulk leakage current	. 12
[8]	HV profiles	16
[9]	Power dissipation on the sensors	18
[10]	Thermal stability and runaway	.20
[11]	Dependence on maintenance days	22
[12]	Barrel-6 with special cooling scenario-J	24
[13]	Calculation with constant coolant temperature	25

[1] Reproduction of the ATLAS ID-TDR results

Assumptions of TDR fig.11-4:

- Total fluence = $1.4 \times 10^{14} n_{eq}/cm^2$ for 10 years
- First 3 years at 10^{33} , later 7 years at 10^{34} cm⁻²s⁻¹

- 100 days for beam, access right after.

	Access scena	V_D at 3385 th day		
Rest	Access 1	Access 2	TDR	our
		28 days at 17ºC	251 V	289 V
	2 days at 20ºC	14 days at 2 days at 17ºC		237 V
- 7ºC		7 days at 17⁰C	197 V	208 V
		none	174 V	179 V
	none	none	160 V	164 V

ATLAS ID-TDR Figure 11-4

Fig.1: present re-calculation

TDR results are more or less reproducible.

[2] Updating the basic parameters

Sensor parameters must be updated since TDR:

- Sensor thickness : 300 μ m at TDR \rightarrow 285 μ m [1]
- Sensitive area (Barrel) : (width)80 μ m*768=61.440mm, (length)61.360mm
- Initial depletion voltage : 34 V at TDR \rightarrow 65 V [2]

Thus, N_{eff0} is set to 1.026*10¹² cm⁻³ to reach 65V.

Neutron equivalent fluence at the Barrel layers

 $1.3^{*}10^{14} n_{eq}$ /cm²/730fb⁻¹ @SCT-B3 at ID TDR \rightarrow new results below [3]

layer	R (cm)	Z(cm)	n _{eq} fluences (cm ⁻²)/100fb ⁻¹
Pixel B-layer	4.2	0-40.7	267*10 ¹²
Pixel B2	12.7	0-40.7	46*10 ¹²
SCT B3	30	0-75	16*10 ¹²
SCT B6	52	0-75	8.9*10 ¹²
SCT D9	44-56	272	14*10 ¹²

[1] ATLAS SCT Specification

- [2] NIMA 578 (2007) 98–118
- [3] Table5.3 of ATLAS-GEN-2005-001

[3] New luminosity profile and ATLAS radiation level

	Prediction of LHC Luminosity profile [1]												
year	1 2010	2 2011	3 2012	4 2013	5 2014	6 2015	7 2016	8 2017	9 2018	10 2019	11 2020	12 2021	year
IL/year	0.5	3.3	15	19	41	42	99	132	132	145	193	242	fb⁻¹
Integ. L	0.5	3.8	19	38	79	121	220	352	484	629	822	1064	fb⁻¹

[4] New access conditions and cooling scenarios

Assuming possible cooling system upgrade in the end of 3rd year, various cooling scenarios are considered.

		T _{sensor} (°C	C) for 1st 3	3 years			T _{sensor} (°C	C) for nex	t 9 years			
SCT	on	on	on	mainte	on	on	on	on	mainte	on		
Beam	off	on	off	nance	off	off	on	off	nance	off		
days	50	116	50	23	126	50	116	50	23	126		
А	-7	-7	-7	+20	-22							
В	0	0	0	+20	-15							
С	+7	+7	+7	+20	-8	-7	-7	-7 -7	-7	-7 -7	+20	-22
D	+15	+15	+15	+20	0							
Е	+25	+25	+25	+20	+10							
F						-15	-15	-15	+20	-30		
G	0	0	0	+20	15	-10	-10	-10	+20	-25		
Н	0	0	0	- 720	-15	-5	-5	-5	+20	-20		
I						0	0	0	+20	-15		
J (*)	+5	+5	+5	+20	+5	+5	+5	+5	+20	+5		

 $^{(*)}$ Scenario-J is set specially for the Barrel-6 case.

[5] Radiation damage models and parameters for V_D calculation

	TDR model	Hamburg model
Donor removal	$N_{eff,0} - N_{C0} (1 - e^{-c\Phi})$	$N_{eff,0} - N_{C0} (1 - e^{-c\Phi})$
Unstable acceptor	$-g_{S}\Phi \exp(-t/\tau(T)),$ $\tau(T) = \tau_{0} \exp(-0.175 \cdot T[^{\circ}C])$	$-g_a \Phi \exp\left(-\Theta(T)_a t/\tau_a\right),$ $\Theta(T)_a = \exp\left(\frac{E_a}{k_B}\left[1/T_R - 1/T\right]\right)$
Stable acceptor	$-g_C\Phi$	$-g_C\Phi$
Reverse annealing	$-g_{y}\Phi\left(1-\frac{1}{1+k_{0}e^{-E_{a}/k_{B}T}\cdot g_{y}\Phi\cdot t}\right)$	$-g_{y}\Phi(1-1/(1+\Theta(T)_{y}t/\tau_{y})),$ $\Theta(T)_{y} = \exp\left(\frac{E_{y}}{k_{B}}[1/T_{R}-1/T]\right)$
Parameters	$N_{C0} = 0.70 \times N_{eff,0}$ $c = 2.29 \times 10^{-13} \text{ cm}^2$ $g_S = 0.0193 \text{ cm}^{-1}$ $\tau_0 = 70 \text{ days}$ $g_C = 0.0177 \text{ cm}^{-1}$ $g_y = 0.046 \text{ cm}^{-1}$ $k_0 = 520 \text{ cm}^3 \text{s}^{-1}$ $E_a = 1.31 \text{ eV}$ $N_{eff,0} = 1.026 \times 10^{12} \text{ cm}^{-3}$	$N_{C0} = 0.70 \times N_{eff,0}$ $c = 0.075 \text{ cm}^{-1} / N_{C0}$ $g_a = 0.018 \text{ cm}^{-1}$ $\tau_a = 2.29 \text{ days} (20^{\circ}\text{C} = \text{T}_{\text{R}})$ $E_a = 1.09 \text{ eV}$ $g_C = 0.017 \text{ cm}^{-1}$ $g_y = 0.059 \text{ cm}^{-1}$ $\tau_y = 480 \text{ days} (20^{\circ}\text{C})$ $E_y = 1.33 \text{ eV}$ $N_{eff,0} = 1.026 \times 10^{12} \text{ cm}^{-3}$
references	ATLAS Inner Detector TDR (1997), Vol-II, p. 402, Table 11-5	G. Lindstrom et al., NIM A 466(2001) 308- 326

Evolution of effective doping concentration N_{eff}

cooling scenario B, Barrel-3

Fig.4 : TDR model (2nd order)

Reverse annealing (pink) takes over in later years.

Fig.5 : Hamburg model (1st order)

Stable acceptor (green) is dominating.

[6] Full depletion voltage V_D

with cooling scenario A, Barrel-3

Fig.6 : Full depletion voltage of cooling scenario A.

Cooling scenario dependence of V_D

Barrel-3

2009/12/6

Differences caused by protons and neutrons

Radiation damage by protons is different from that by neutrons[1]. See the right table.

The plot shows the V_d evolution assuming these damage constants, while keeping the fluence values same.

	by neutrons	by protons	Hamburg model
g _C [cm ⁻¹]	0.015	0.019	0.017
g _Y [cm ⁻¹]	0.052	0.066	0.059

Note the n-eq flux ratios are [2]

location	neutrons	pions	protons
B3	8.4	6.4	1.1
B6	5.8	2.6	0.52
D9	9.3	3.5	0.91

$V_{\rm D}$ evolution with various cooling scenarios at Barrel-3

	Ts	sensor(°C	C) for 1	st 3 ye	ars	T _{sensor} (°C) for next 9 years				ars		V _D	(volt) at th	ie year en	d of			
days	50	116	50	23	126	50	116	50	23	126	model	6th	8th	10th	12th			
Δ	7	7	7	20	22						TDR	4.1	64.6	181	447			
~	-7	-7	-7	20	-22										Hamburg	2.9	65.3	146
R	0	0	0	20	_15									TDR	4.1	64.6	181	447
В	0	0	0	20	-13				20		Hamburg	2.9	65.4	146	276			
C	7	7	7	20	_8	-7	_7	_7		_22	TDR	4.1	64.7	181.4	446.6			
C	1	1	1	20	-0	-7	-7	-7	20	-22	Hamburg	3.2	65.6	146	277			
	15	15	15	20	0									TDR	4.2	64.7	181	447
D	15	15	15	20	0							Hamburg	4.4	66.8	147	278		
F	25	25	25	20	10						TDR	4.5	65.1	182	447			
	25	25	23	20	10							Hamburg	11.9	74.4	155	285		
						15	15	15	20	30	TDR	4.0	64.1	179	438			
						-15	-13	-13	20	-30	Hamburg	2.7	64.7	144	273			
C						10	10	10	20	25	TDR	4.1	64.3	180	441			
G	0	0	0	20	15	-10	-10	-10	20	-23	Hamburg	2.8	65.0	145	274			
Ц	U	0	0	20	-15	Б	5	5	20	20	TDR	4.1	65	183	452			
						-5	-5	-5	20	J -20	Hamburg	3.1	65.8	147	279			
						0	0	0	20	20 45	TDR	4.4	67.0	192	483			
						0	0	0	20	-13	Hamburg	3.8	68.3	153	291			

[7] Bulk leakage current

references	Robert Harper's Thesis (2001, University of Sheffield)									
$I = g(\Theta(T_A)t_{ir}, \Theta(T_A)t')\alpha\phi V$										
$g(\Theta(T_A)t_{ir},\Theta(T_A)t^{'}) = \sum_{i=1}^{n} \left\{ A_i \frac{\tau_i}{\Theta(T_A)t_{ir}} \left[1 - \exp\left(-\frac{\Theta(T_A)t_{ir}}{\tau_i}\right) \right] \exp\left(-\frac{\Theta(T_A)t^{'}}{\tau_i}\right) \right\}$										
	$\Theta(T_A) = \exp\left(\frac{E_I}{k_B}\left[\frac{1}{T_R} - \frac{1}{T_A}\right]\right)$									
	α_{c}	$_{a}(-7^{\circ}C) = (6.90 \pm$	$(0.20) \times 10^{-18} \text{ A} \cdot \text{cm}^{-1}$							
	i	$\tau_i(\min)$	A_i							
	1	$(1.2\pm0.2)\times10^{6}$	0.42 ± 0.11							
	2	$(4.1\pm0.6)\times10^4$	0.10 ± 0.01							
	3	$(3.7 \pm 0.3) \times 10^3$	0.23 ± 0.02							
	4	124 ± 25	0.21 ± 0.02							
	5	8 ± 5	0.04 ± 0.03							

Leakage current/module at B3

	-	T _{sensor} (°	C) for 1	st 3 yea	ſS	Т	T _{sensor} (°C) for next 9 years			ars I _{leak} (mA) of B3 at the year e			nd of			
days	50	116	50	23	126	50	116	50	23	126	T(°C)	6th	8th	10th	12th	
А	-7	-7	-7	+20	-22						-7	0.24	0.69	1.19	1.98	
В	0	0	0	+20	-15							-7	0.24	0.69	1.19	1.98
С	+7	+7	+7	+20	-8	-7	-7	-7	+20	-22	-7	0.24	0.69	1.19	1.98	
D	+15	+15	+15	+20	0						-7	0.24	0.69	1.19	1.98	
E	+25	+25	+25	+20	+10						-7	0.23	0.68	1.18	1.97	
F						_15	15 15	_15	+20	-30	-15	0.11	0.31	0.53	0.88	
						-15	-13	-13	+20	-30	-7	0.24	0.70	1.20	2.00	
G						-10	-10	-10	+20	.00 05	-10	0.18	0.51	0.89	1.47	
0	0	0	0	+20	15	-10	-10	-10	+20	-25	-7	0.24	0.69	1.20	1.99	
Ц	0	0	0	+20	-15	-5	-5	-5	+20	-20	-5	0.29	0.84	1.44	2.40	
						-5	-5 -5 +20	-5	+20	-20	-7	0.24	0.69	1.18	1.97	
						0		120 45	0	0.46	1.33	2.28	3.79			
						0	0	0	120	-15	-7	0.23	0.68	1.16	1.92	

[9] Bulk leakage current

Barrel-3 for various cooling scenarios based on Harper's model.

Fig. 9 : Leakage current at the operating temperature

Fig. 10 : Leakage current normalized at -7°C

Bulk leakage current: comparison with Moll's model [1]

Fig. 11: Both models on leakage current agree within +-10%.

[1] Moll Logarithmic model: M. Moll et al., NIM A426(1999)87

- [2] Harper model: Robert Harper's Thesis (2001, University of Sheffield)
- [3] Wunstorf model: R. Wunstorf, PhD Thesis (Oct. 1992, University of Hamburg)
- and A Chilingarov et al., NIM A360 (1995) 432-437

[8] HV(sensor bias voltage) profiles

HV-case-A : V_{HV} set at least 100V higher than Vd (but V_{min} is150V). An unique fixed HV setting for each year is assumed. HV-case-B : V_{HV} set at the maximum voltage of 430 V.

2009/12/6

Voltage drop across the $R_{HV}(11.2k\Omega)$ of the module

SCT Barrel-3

[1] Fig. 7 of A. Abdesselam et al., NIM A568(2006)642

Fig.13 : Voltage drop across the HV resistors on the module

[9] Power dissipation on the sensors

Power = $V_{apply} * I_{leak}$

Total power dissipation by leak current at Barrel-3

[10] Thermal runaway limits

Thermal simulation using FEA as well as simple model by G. Beck and G. Viehhauser (see Glasgow workshop 14/05/2009 and draft paper to be published.)

Thermal runaway limits in bulk heat generation versus T_C plane.

How to calculate the runaway time?"

- (1) Pick up coolant temperature T_C (say -22°C) for the next 9 years (T_C =-15°C fixed for the first 3 years).
- (2) Calculate the thermal runaway critical point from the red curve (150uW/mm²).
- (3) Divide by the safety factor SF (say 2) to get the critical power density q_0 (75uW/mm²).
- (4) Calculate the time reaching the corresponding q_0 .

Cooling temperature of B3 vs LHC year

The coolant temperature T_c is set at fixed value for last 9 years.

[11] Dependence on maintenance days

Duration of the annual maintenance at 20°C is changed to see the effects at the 10th year-end.

scenario	Coo	Cooling scenario B							
barrel layer		SCT B3							
quantity	Vd	Ι	power density						
model	Hamburg	Harper	Hamburg						
unit	[V]	[mA]	[uW/mm ²]						
0 days	109.5	1.62	47.8						
2	102.6	1.49	45.5						
9	113.0	1.32	44.4						
16	129.4	1.24	44.9						
23	145.9	1.19	45.8						
30	162.2	1.15	46.8						
37	178.4	1.11	47.9						
44	194.5	1.08	48.9						
51	210.4	1.05	50.0						
58	226.1	1.02	51.0						
65	241.7	0.99	52.1						
72	257.2	0.97	53.0						
79 days	272.5	0.95	54.0						

Fig. 19 : Dependence of end-of-10th-year values on the maintenance days at 20°C.

Effect of shutdown with SCT warm-up days

Fig. 20 : One full-year shutdown is inserted at n-th year, during which the SCT is kept at -22°C except warm-up days at 20°C. The luminosity profile is kept same (except one year delay after the shutdown year).

[12] Barrel-6 with special cooling scenario-J

Fig.21: Full depletion voltage V_d

Fig.22: Leakage current / module

Note: The maximum voltage is set at 350 V for B6.

[13] Calculation with constant coolant temperature T_C

- So far, the constant sensor temperature is assumed. But this is not true especially for later years. More realistic simulation is to assume the <u>constant coolant</u> <u>temperature</u>.

- As pointed by G. Beck and G. Viehhauser, there are two main thermal resistances to be considered in the new simulation.

	T _{coolant} (°C) for 1st 3 years					T _{coolant} (°C) for next 9 years				
SCT	on	on	on	mainte	on	on	on	on	mainte	on
Beam	off	on	off	nance	off	off	on	off	nance	off
days	50	116	50	23	126	50	116	50	23	126
B _C	-15	-15	-15	+20	-15	-22	-22	-22	+20	-22
D _C	0	0	0	+20	0	-22	-22	-22	+20	-22
G _C	-15	-15	-15	+20	-15	-25	-25	-25	+20	-25
I _C	-15	-15	-15	+20	-15	-15	-15	-15	+20	-15

T_{sensor} evolution with constant coolant temperature scenarios

Fig.25 : Sensor Temperature (TDR model)

Note that there are no built-in safety factors in these simulations.

The results on thermal runaway points are similar to those obtained by simulation with constant sensor temperature scenarios.

Back up slides

Programmes and summary file can be pick up at

http://atlas.kek.jp/si-soft/Vd/index.html