Hamburg model [1]

 $\Delta N_{eff}(\Phi,t) = N_C(\Phi) + N_a(\Phi,t,T) + N_Y(\Phi,t,T)$

Donor removal & Stable acceptor	$N_C(\Phi) = N_{C0} \left(1 - e^{-c\Phi} \right) - g_C \Phi$	
Unstable acceptor	$N_a(\Phi, t, T) = -g_a \Phi \exp\left(-\Theta(T)_a t / \tau_a\right), \Theta(T)_a = \exp\left(\frac{E_a}{k_B}\left[1/T_R - 1/T\right]\right)$	
Reverse annealing	$N_{Y}(\Phi, t, T) = -g_{y} \Phi \left(1 - 1/(1 + \Theta(T)_{y} t / \tau_{y}) \right), \Theta(T)_{y} = \exp \left(\frac{E_{y}}{k_{B}} \left[1/T_{R} - 1/T \right] \right)$	
Parameters	Standard Silicon $N_{C0} = 0.70 \times N_{eff,0}$ $c = 0.075 \text{ cm}^{-1} / N_{C0}$ $g_a = 0.018 \text{ cm}^{-1}$ $\tau_a = 2.29 \text{ days} (20^{\circ}\text{C} \equiv \text{T}_{\text{R}})$ $E_a = 1.09 \text{ eV}$ $g_C = 0.017 \text{ cm}^{-1}$ $g_y = 0.059 \text{ cm}^{-1}$ $\tau_y = 480 \text{ days} (20^{\circ}\text{C})$ $E_y = 1.33 \text{ eV}$ $N_{eff,0} = 1.026 \times 10^{12} \text{ cm}^{-3}$	Oxygenated Silicon $N_{C0} = 0.45 \times N_{eff,0}$ $c = 0.075 \text{ cm}^{-1} / N_{C0}$ (??) $g_a = 0.014 \text{ cm}^{-1}$ $\tau_a = 2.917 \text{ days} (20^{\circ}\text{C} \equiv \text{T}_{\text{R}})$ $E_a = 1.09 \text{ eV}$ $g_C = 0.020 \text{ cm}^{-1}$ $g_y = 0.048 \text{ cm}^{-1}$ $\tau_y = 800 \text{ days} (20^{\circ}\text{C})$ $E_y = 1.33 \text{ eV}$ $N_{eff,0} = 1.026 \times 10^{12} \text{ cm}^{-3}$

[1] G. Lindstrom et al., NIM A 466(2001) 308-326

2012.11.8

M. Moll, Radiation Damage in Silicon Particle Detectors, Dissertation, Hamburg 1999. 11