Event Generator Development at KEK

Shigeru Odaka

Institute of Particle and Nuclear Studies High Energy Accelerator Research Organization (KEK) Japan shigeru.odaka@kek.jp

Atlas Physics WS at Lund

NLO Working Group at KEK

Collaboration with the Minami-Tateya group, since Jan., 2000

Minami-Tateya Group

(a numerical calculation group)

- Development of the GRACE system
 - Parton Shower simulations NLL-jet (QCD final-state) QEDPS

Automatic calculation software package for HEP by Minami-Tateya

T. Ishikawa et al., GRACE manual, KEK Report 92-19 (1993) F. Yuasa et al., Prog. Theor. Phys. Suppl. 138, 18 (2000); hep-ph/0007053

- Automatic generation of Feynman diagrams

- Automatic generation of FORTRAN codes to calculate the cross section

- Including an integration/event-generation tool (BASES/SPRING)

Event-generator generation system
Powerful for multi-body production processes
Libraries: Standard Model, MSSM, EW 1-loop

Products: grc4f, 4f-prod. in KORALW, GRAPE-Dilepton, SUSY23 etc.

Goals of the NLO WG

- 1. Development of a GRACE-based tree-level eventgenerator generation system for hadron physics Connection to PYTHIA
- Development of an automatic QCD-NLO eventgenerator generation system for hadron physics
 Preparation of a QCD 1-loop library of GRACE
 Development of an NLO event-generation technique
- 3. Development of NLL (Next-to-Leading Log) initial-state QCD parton-shower simulation: NLL-jet

Present Status

Integration of GRACE and PYTHIA

The framework has been established. GR@PPA (GRace @ P-P and p-Anti-p)

 \rightarrow **GR@PPA_4b** for 4-*b* production

QCD-NLO Automatic Calculation The 1-loop library is partially available. (3-points only; 4-points in preparation) Going to establish the event-generation technique → Drell-Yan as an example

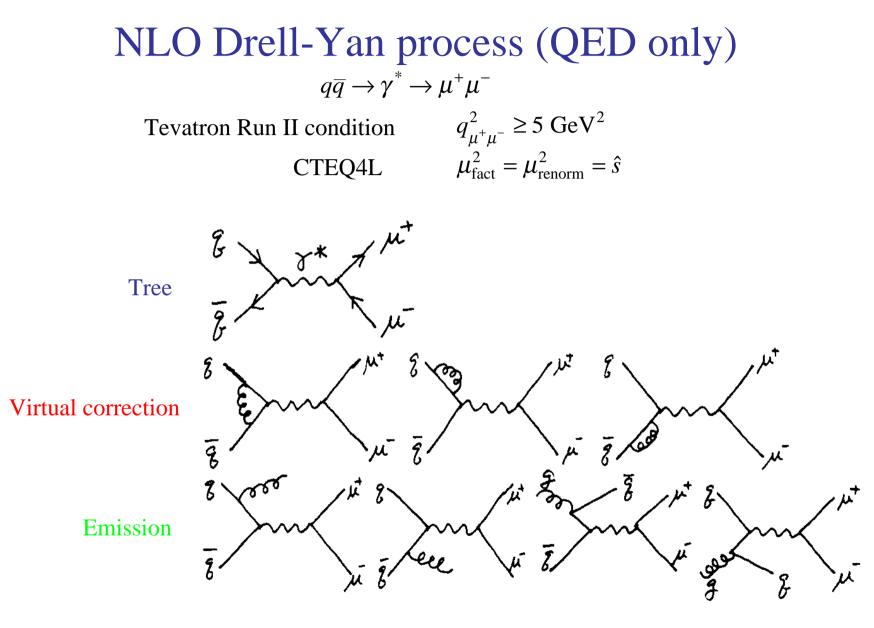
Initial-state NLL-jet

The NLL-QCD evolution has been reproduced by MC. (talk by K. Kato at Les Houche) Next step: introduction of kinematics

Atlas Physics WS at Lund

GR@PPA_4b

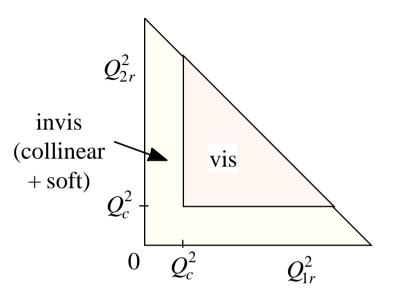
A complete set of the event generators at the tree-level for the process: $pp \text{ or } p\overline{p} \rightarrow b\overline{b}b\overline{b} + X$


> - All possible processes in the SM Higgs, EW, QCD Pure QCD generation available

- Exact tree-level calculation

- Divided to 8 sub-processes according to the variation in the initial state and the coupling

Separated/combined generation selectable


- Embedded in PYTHIA

Atlas Physics WS at Lund

$\sigma_{\text{non-rad}} = \sigma_0 + \sigma_v + \sigma_c \text{(invis)}$ $\sigma_{\text{rad}} = \sigma_{\text{emission}} \text{(vis)}$ $\sigma_c = \text{ collinear approximation}$ $\sigma_{\text{NLO}} = \sigma_{\text{non-rad}} + \sigma_{\text{rad}}$						
Q_{c}^{2} (GeV ²)	$\sigma_{non-rad} (nb)$	σ _{rad} (nb)	σ _{NLO} (nb)			
10-1	-149.22	219.25	70.03			
10-2	-346.22	416.91	70.69			
10-3	-605.18	675.93	70.75			
	$\sigma_{c} = \sigma_{emi}$ $\sigma_{c} = \sigma_{nc}$ $\sigma_{c} = \sigma_{nc}$ $\frac{Q_{c}^{2}}{(GeV^{2})}$ $\frac{10^{-1}}{10^{-2}}$	$\sigma_{c} = \sigma_{\text{emission}}(\text{vis})$ $\sigma_{c} = \text{collinear}$ $\sigma_{c} = \sigma_{\text{non-rad}} + \sigma_{\text{rad}}$ $\frac{Q_{c}^{2}}{(\text{GeV}^{2})} = \sigma_{\text{non-rad}} + \sigma_{\text{rad}}$ $\frac{Q_{c}^{2}}{(\text{nb})} = \sigma_{\text{non-rad}} + \sigma_{\text{rad}}$	$\sigma_{c} = \text{collinear approxima}$ $\sigma_{c} = \text{collinear approxima}$ $\sigma_{c} = \sigma_{\text{non-rad}} + \sigma_{\text{rad}}$ $\frac{Q_{c}^{2}}{(\text{GeV}^{2})} = \sigma_{\text{non-rad}} + \sigma_{\text{rad}}$ $\frac{\sigma_{rad}}{(\text{nb})} = \sigma_{rad}$			

 $Q_{ir}^2 = |t|$ of the radiation

Stable but large negative exists

-925.83

10-4

PDF/PS: collinear approximation integrated over whole phase space

996.83

 \rightarrow the whole $\sigma_{\rm c}$ should be in "non-rad".

$Q_{\rm c}^{2}$ (GeV ²)	$\sigma_{\text{non-rad}} + \sigma_{\text{c}} (\text{vis}) (\text{nb})$	$\sigma_{\rm rad} - \sigma_{\rm c} ({\rm vis}) ({\rm nb})$	$\sigma_{\rm NLO}~({\rm nb})$
10-2	54.21	16.48	70.69

71.00

The large negative vanished.

But, not positive definite in the whole phase space.

Further cancellation or negative-weight events