

AMT-3: Pair mode issue & New Simulation Results

- Introduction
- Short Pulse effects in Pair mode
- Simulation at New Conditions
- Summary

24 Feb 2004@CERN Yasuo Arai (KEK) *yasuo.arai@kek.jp* http://atlas.kek.jp/tdc/

ATLAS MDT Front-end Electronics

Short Pulse Effects in Pair (Leading + Width) Mode

A phenomenon is found in that most of hits are lost for some period in pair mode. This is explained by a very short pulse from the ASD.

Н

Η

Н

Leading edge time and Trailing edge time are swapped. Then pair data has wrong leading edge time. Thus it becomes outside of matching window.

Furthermore ...

and may also cause ...

Unstable load of Coarse/Fine Time --> coarse counter parity error.

Summary for short pulse input

- A short pulse input of less than 2 ns width can not set 1st flip-flop, but generate a short output pulse. Thus only a leading edge is stored in pair mode.
- Then leading and trailing edge are mistaken afterward. This mistake will last until next short pulse.
- Due to the data driven architecture of the AMT, the mistaken data may also block other normal channel data.
- The short pulse also cause unstable latch of the coarse and fine time (coarse counter parity error).
- The same phenomena can be happen also in edge mode, but it is only temporally.
- The effects can be minimized by re-designing pair matching logic, but it is difficult to eliminate such short pulse effects perfectly in digital LSI.

Data Flow Simulation of AMT

Data flow simulation have been done by using AMT-3 Verilog codes. Assumed conditions are follows;

- Trigger rate : 100kHz
- Hit Rate : ~ 300kHz x 24ch
- Trigger latency : 2.5 μs
- Drift time : 0 ~ 800 ns
- Pulse width : 10 ~ 200 ns
- Dead time : 800 ns
- Mode : Pair (Leading edge + Width) or Leading & Trailing Edge (Pair mode and Leading edge only mode are almost same)
- Matching window = 1000 ns (@Pair) or 1200 ns (@Edge)
- Header, Mask, and Trailer words are read out
- Serial readout : 40Mbps (80Mbps)
- Buffer control :

ATLAS Muon Elec, entrophet rofull reject=enable lifull reject=enable trfull reject=1:

Hit Rate	Mode	No. of Hits	No. of Mask	Total No. of Words	
			Word	(incl. head and trailer)	
300 kHz	Pair	5.93	0.98	8.91	
300 kHz	Edge	14.2 ×2.4	0.99	17.1 ×1.9	

Summary

Hit Rate	Mode	Serial Speed	Data Loss	Max. Event Delay
300 kHz	Pair(Leading+Width)	40 Mbps	0.36%	95 μsec
300 kHz	Edge(Leading & Trailing)	40 Mbps	41.9%	87 µsec
150 kHz	Edge(Leading & Trailing)	40 Mbps	6.4%	98 µsec
100 kHz	Edge(Leading & Trailing)	40 Mbps	0.19%	108 µsec
300 kHz	Edge(Leading & Trailing)	80 Mbps	2.3%	53 μ sec

Summary of Simulation

- Data loss is around 0.4% in Pair mode and Leading edge only mode at 300 kHz.
- Hit data size in Edge mode becomes 2.4 times larger than that in the Pair mode due to different matching window size.
- In Leading and Trailing edge mode, maximum hit rate should be less than 150 kHz to keep data loss in reasonable level.
- By increasing the serial readout speed to 80Mbps, maximum hit rate resumes near 300 kHz.
- Event delay is reduced to half in 80Mbps serial readout.
- Dropping mask word will reduce data size by 6% at 300 kHz hit rate.
- Reducing dead time to 300ns will increase data size by 14% at 300kHz hit rate.

End

Emulated short pulse(ch0).

(leading and trailing edges are swapped, and has 82usec pulse width.)

Output when the short pulse does not exist.

 $ch9\sim ch16$ data are selected and read out.

Output when the short pulse exists

ch9 and ch10 data are selected but ch11 \sim ch16 data are dropped since ch0 data stop processing of trigger matching circuit.

Thus we can reproduce the phenomena of mezzanine card dropout by a short pulse.

300ns Dead Time

15% (300kHz × 500ns) larger data size.