LHC計画 ATLAS 実験における、 $t\bar{t}H$ 、 $H \rightarrow \tau^- \tau^+ \mathcal{F} \tau \lambda \lambda$ の解析

岡山大学自然科学研究科数理物理科学専攻 41414011 伊藤 彰洋

平成 16年2月16日

素粒子物理学を記述する理論として標準模型と呼ばれるものがある。標準模型は現在までの 実験結果を良く予言している。しかしながら、標準模型で予言される粒子のうち、電弱相互作 用の統一に重要な役割を担い、粒子に質量を与えるヒッグス粒子のみが未だ観測されていない。 そのため、ATLAS実験ではヒッグス粒子を発見することが最重要課題の一つである。LHCが 高エネルギー、高ルミノシティーであるために、ヒッグス粒子が存在するならば、115GeV/c² から 1TeV/c² のどの質量でも確実に発見できるとされている。

発見後に重要となるのは、ヒッグス粒子の性質を調べることである。その中でも、ヒッグス 粒子とフェルミオンとの結合定数 (湯川結合)の測定が重要である。湯川結合はフェルミオンの 質量に比例するので、各フェルミオンの湯川結合の大きさを調べる事により、そのヒッグス粒 子が標準模型のものかどうか判断できる。しかしそのためには、特に175GeV/c² と質量が非 常に重いトップ・クォークとの湯川結合の大きさを知る必要がある。しかし、トップ・クォーク の湯川結合が測定可能な過程は、ttH 生成のみである。そこで、本研究ではttH、 $H \rightarrow \tau^- \tau^+$ チャンネルを用いて、トップ・クォークの湯川結合が、どの程度の精度で測定できるかを、モ ンテカルロ・データを使って評価した。

本研究で、ヒッグス粒子の質量が 115GeV/c² の時、LHC のデザインルミノシティーでの 3 年間のデータ量で、トップ・クォークの湯川結合が 25% の精度で測定可能であるという結論 が得られた。このことから、 $t\bar{t}H, H \rightarrow \tau^- \tau^+$ チャンネルは、トップ・クォークの湯川結合の 測定を通して、標準模型を超える物理が存在するか調べる際に、重要なチャンネルである事が 分かった。

目 次

1	序論		1
2	標準	模型とヒッグス粒子	3
	2.1	標準模型	3
	2.2	ヒッグス機構	3
		2.2.1 ゲージ・ボソンの質量	5
		2.2.2 フェルミオンの質量	6
		2.2.3 ヒッグス粒子の質量	6
		2.2.4 ヒッグス粒子	7
		2.2.5 湯川結合	8
3	LH	C 計画と ATLAS 実験	10
	3.1	LHC 計画	10
	3.2	運動学的物理量	15
		3.2.1 横方向運動量 P_T	16
		3.2.2 擬ラピディティー η	16
		3.2.3 消失運動量	16
		3.2.4 $\exists \neg \lor \Delta R$	17
	3.3	ATLAS 検出器	17
4	LH	C でのヒッグス粒子の生成、崩壊過程	20
	4.1	ヒッグス粒子の生成過程	20
	4.2	ヒッグス粒子の崩壊過程	23
	4.3	$t\bar{t}H, H ightarrow au^+$ チャンネル	25
	4.4	au 粒子	25
	4.5	終状態	26
5	イベ	シントの構築	27
	5.1	共通のイベントセレクション..............................	28
		5.1.1 孤立したレプトン	28
		5.1.2 孤立したレプトンとジェットの選択	30
	5.2	2 レプトン・モード	33
		5.2.1 τ ジェットの η	33
		5.2.2 孤立したレプトン, ジェットの数.......................	33
		5.2.3 レプトンの電荷	34
		5.2.4 M _W , M _{top} 質量・ウィンドウ	35
		5.2.5 $M_{\tau \mathcal{Y}_{xy} h, \nu \mathcal{I} h \mathcal{Y}}$	36
	5.3	3レプトン・モード	37

	5.3.1 孤立したレプトンとジェットの数	37
	5.3.2 孤立したレプトンと ~ ジェットの電荷	37
	5.3.3 M_Z VETO	37
	5.4 結果	40
	5.5 湯川結合の不定性の評価	42
6	結論	45
謝	辞	46
\mathbf{A}	au-ID	47
в	b-タグ	52
\mathbf{C}	ATLFAST	55
	C.1 P_T	55
	C.2 エネルギー	55
	C.3 ジェットの構築	56
	C.4 ジェットのタグ付け	56
	C.5 ジェットの E_T の補正	57
研	究業績	60

図目次

1.1	ATLAS での標準模型のヒッグスの発見能力	1
1.2	ヒッグス粒子の自己結合、フェルミオンとの結合のファインマン・ダイアグラム .	2
2.1	ヒッグス粒子の質量予想	8
2.2	標準模型と MSSM での湯川結合	9
3.1	陽子・陽子衝突	1
3.2	LHC リング 1	4
3.3	座標系	5
3.4	消失運動量	7
3.5	ATLAS 検出器	8
4.1	ヒッグス粒子の主な生成過程2	0
4.2	標準模型におけるヒッグス粒子の生成断面積	1
4.3	標準模型におけるヒッグス粒子の崩壊比2	4
5.1	シグナルのファインマン・ダイアグラム 2	7
5.2	b ジェットの描像	9
5.3	レプトンの isolation 条件	0

5.4	μ 粒子の P_T 分布	1
5.5	電子の P_T 分布	1
5.6	q ジェットの P_T 分布 32	2
5.7	b ジェットの P_T 分布 32	2
5.8	τ ジェットの P_T 分布	2
5.9	τ ジェットの η 分布	3
5.10	シグナルでの $P_T \ge 15 GeV/c$ の q ジェットの本数 33	3
5.11	$t\bar{t}$ の終状態	4
5.12	二つのレプトンの電荷の和 34	4
5.13	再構築したトップ・クォークの質量分布 38	5
5.14	再構築したヒッグス粒子の質量分布 36	6
5.15	孤立したレプトンと τ ジェットの電荷の和 38	8
5.16	$t\bar{t}Z$ のファインマン・ダイアグラム 38	8
5.17	電荷が逆、フレーバーが同じレプトン対の不変質量 38	8
5.18	τジェットとレプトンで組んだ不変質量分布	9
5.19	トップ・クォークの湯川結合の不定性44	4
A.1	τ ジェットの R_{em} 分布	9
A.2	q ジェットの R_{em} 分布 48	9
A.3	τ ジェットの ΔE_T^{12} 分布	9
A.4	$q ジェットの \Delta E_T^{12} 分布 \dots 48$	9
A.5	τ ジェットの N_{tr} 分布	0
A.6	$q ジェットの N_{tr}$ 分布	0
A.7	τ ジェットの R_{em} の P_T 依存	0
A.8	$q ジェットの R_{em} の P_T$ 依存	0
A.9	τ ジェットの検出効率とジェット・リジェクションの関係	1
B.1	b-jet の描像	2
B.2	$r-\phi$ 平面での b-jet の描像	3
B.3	衝突パラメーターの分解能	3
B.4	bジェットの検出効率と、各ジェットに対するジェット・リジェクション 55	3
C.1	キャリブレーション因子の分布	7

表目次

2.1	ゲージ・ボソンの性質	3
3.1	LHC 加速器のパラメーター	11
3.2	各相互作用の断面積	13
3.3	ATLAS を構成する検出器の種類、位置、η、性能	19
4.1	τ 粒子の崩壊過程	25

4.2	$t\bar{t}H, H \rightarrow \tau^{-}\tau^{+}$ チャンネルの終状態	26
5.1	$t\bar{t}H, H \rightarrow \tau^{-}\tau^{+}$ チャンネルの断面積	27
5.2	各過程と断面積、イベントジェネレーター	28
5.3	2 レプトン・モードで tīH,H→ττ,WW の各カットでのイベント数	40
5.4	2 レプトン・モードでバックグラウンドの各カットでのイベント数	40
5.5	3 レプトン・モードで tīH,H→ττ,WW の各カットでのイベント数	41
5.6	3 レプトン・モードでバックグラウンドの各カットでのイベント数	41
5.7	$\int L dt = 600 f b^{-1}$ でのイベント数	41
5.8	Y_{top} の不定性	43

1 序論

スイスのジュネーブ郊外にある欧州合同原子核研究機関 (CERN) で、現在最も力を入れられて いるのが LHC 計画である。Large Hadron Collider(LHC) は、周長 27km、重心系エネルギーが 14TeV の陽子・陽子衝突型加速器である。そのエネルギーは、現在の最高エネルギーを達成して いる Tevatron と比較して約7倍も大きい。また、陽子同士の衝突が25nsec に一度起きるため高 いルミノシティーを得ることができる。このような性能のおかげで、LHC では2007年の実験開 始後に素粒子物理学の標準模型に残されている、素粒子の質量の起源 (ヒッグス機構) や力の統一 などの幾つかの問題に答えが出ると予想されている。

LHC には四つの衝突点があり、その一つに A Toroidal LHC ApparatuS (ATLAS) 検出器が設置される。ATLAS 検出器は長さ44m、高さ22m、検出器の読み出しチャンネルは一億六千万チャンネル、データサイズは1TB/hour であり、全てにおいて前代未聞な規模である[1]。現在は検出器やソフトウェアの開発が国際協力で行われている。

図 1.1 [2] は、ヒッグス粒子の質量と、ATLAS で観測できるヒッグス粒子のイベントの有意性 $N_{> / f + n} / \sqrt{N_{/ / / f + j + r}}$ の関係である。どのヒッグス粒子の質量でも、有意性が発見の目安と なる 5 σ を超えている。この事から、標準模型において未だ未発見であるヒッグス粒子は、存在す るならば LHC で確実に発見できると言える。

しかし、ただ発見すればよいわけではなく、以下の緒性質を調べる必要がある。

ヒッグス粒子の自己結合の存在(図1.2 左、中央)

1. 序論

ヒッグス粒子同士の結合が存在するならば、真空期待値を持つ、という証明になる。

フェルミオンとの湯川結合 (図 1.2 右)

標準模型ではフェルミオンとの湯川結合は、フェルミオンの質量に比例する。もし、測定した湯川結合がこの関係を満たさないならば、そのヒッグス粒子は標準模型のものではないと 言える。

電荷、スピン、パリティー

標準模型のヒッグス粒子は、電荷0、スピン0、パリティー正のスカラーボソンである。も し発見したヒッグス粒子がこれらの量子数を持たないならば、そのヒッグス粒子は標準模型 のヒッグス粒子ではなく、標準模型を超える物理のヒッグス粒子であると言える。

これらの性質を調べることで、標準模型を超える物理の存在の有無が分かる。

図 1.2: ヒッグス粒子の自己結合、フェルミオンとの結合のファインマン・ダイアグラム。

湯川結合の、フェルミオンの質量に対する線型性を見るためには、フェルミオンの中で最も質量が重いトップ・クォークの湯川結合も知らなければならない。しかしトップ・クォークとの湯川結合が測定可能な過程は、 $t\bar{t}H$ 生成のみである。そこで本研究では、 $t\bar{t}H$ 、 $H \rightarrow \tau^-\tau^+$ チャンネルで、トップ・クォークとヒッグス粒子の湯川結合の強さの測定誤差がどの程度であるか調べた。

本論文の構成は、2章において標準模型とヒッグス粒子について述べ、3章ではLHC加速器と ATLAS 検出器の特徴について述べる。そして4章ではLHCでのHiggs 粒子の生成・崩壊過程に ついて説明する。5章において本題となる解析結果と、その結果を用いてトップ・クォークの湯川 結合の測定誤差を評価する。最後に6章で本研究の結論をまとめる。

2 標準模型とヒッグス粒子

2.1 標準模型

素粒子物理を記述する標準模型があり、物質を構成する粒子としてスピン1/2のフェルミオン であるレプトンとクォークがある。レプトン、クォーク共に、それぞれ三つの世代に分類できる。 各世代はさらに下のように二重項を形成する。

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$$
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

また、物質間には整数のスピンを持つ粒子を媒介する相互作用がある。それぞれ電磁相互作用、 弱い相互作用、強い相互作用、重力相互作用である。ただし素粒子物理の世界では、重力相互作 用は他の相互作用に比べて無視できるほど弱い。重力相互作用以外の各相互作用の媒介粒子であ るゲージ・ボソンは表 2.1 の性質を持つ [3]。

名称	媒介する相互作用	スピン	荷量 (結合定数)	質量
gluon	強い相互作用	1	カラー荷 $(lpha_s)$	0
W	弱い相互作用	1	弱荷 (α_w)	$80.4 \mathrm{GeV/c^2}$
Ζ	弱い相互作用	1	弱荷 (α_w)	$91.2 \mathrm{GeV/c^2}$
γ	電磁相互作用	0	電荷 (α)	0

表 2.1: ゲージ・ボソンの性質。荷量とは相互作用の強さを表す。 $\alpha_s \sim 1, \alpha_w \sim 10^{-6}, \alpha \sim 10^{-2}$

電磁相互作用は U(1)、弱い相互作用は SU(2)、強い相互作用は SU(3)の対称性を持つゲージ 群として記述される。電磁相互作用と弱い相互作用を統一する電弱相互作用は、SU(2)×U(1) 群 に統一され、その際に全ての粒子は質量が 0 でなくてはならない [4]-[6]。そこで、粒子に持たせ るために導入されたのが、電弱相互作用の自発的対称性の破れを生み出すヒッグス機構であり、そ こでヒッグス粒子の存在が示唆された [7]。

2.2 ヒッグス機構

本節では、ヒッグス機構について述べる。

電磁相互作用と、電磁相互作用を統一した電弱相互作用は、SU(2)×U(1)群に統一される。左 巻きフェルミオン二重項をL、右巻きフェルミオン一重項をRとし、三つのベクトル・ボソンを W^µ(W[±]、Z⁰)、第四番目のベクトル・ボソン(光子)を B^µとする。そのラグランジアンは次のよ うに書ける。

$$\mathcal{L}_{1} = \bar{L}\gamma^{\mu} \left[i\partial_{\mu} - g\frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu} - g'\frac{Y}{2}B_{\mu} \right] L + \bar{R}\gamma^{\mu} \left[i\partial_{\mu} - g'\frac{Y}{2}B_{\mu} \right] R - \frac{1}{4}\boldsymbol{W}_{\mu\nu} \cdot \boldsymbol{W}^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$
(2.1)

ここで、

$$B_{\mu\nu} \equiv \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

Y:ハイパー荷の生成演算子
 $\boldsymbol{\tau}:弱アイソスピン荷生成演算子$

であり、電荷Qとの間に次の関係が成り立つ。

$$Q = \tau^3 + \frac{Y}{2} \tag{2.2}$$

式 (2.1)の最後の二項は、場 W_{μ} の運動エネルギーと自己相互作用項、および場 B_{μ} の運動エネル ギーを表している。しかし、この式にはフェルミオンやゲージ・ボソンの質量項が存在しないの で、質量が0のフェルミオンやゲージ・ボソンを記述している。そこで、質量項を付け加えよう とすると、ゲージ不変性を破ってしまう。そこで、ゲージ不変な方法で粒子の質量を生成するた めに、ヒッグス機構を使う。つまり、ゲージ対称性を自発的に破る事で、粒子に質量を持たせるの である。

 W^{\pm} 、 Z^{0} に質量を持たせ、光子は質量0のままであるようなヒッグス場を実現するため、四つのスカラー場 ϕ^{i} を導入する。 \mathcal{L}_{1} に、次のようなスカラー場に対する $SU(2) \times U(1)$ 不変なラグランジアンを付け加えなければならない。

$$\mathcal{L}_{2} = \left| \left(i\partial_{\mu} - g\boldsymbol{T} \cdot \boldsymbol{W}_{\boldsymbol{\mu}} - g' \frac{Y}{2} B_{\mu} \right) \phi \right|^{2} - V(\phi)$$
(2.3)

ここで、| |² ≡ ()[†]() の意味である。また、四つの場を、ハイパー荷 Y=1 のアイソスピン二重 項にまとめるように選ぶ。

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad \phi^+ \equiv (\phi_1 + i\phi_2)/\sqrt{2} \\ \phi^0 \equiv (\phi_3 + i\phi_4)/\sqrt{2}$$
(2.4)

また、ヒッグスポテンシャル*V*(φ)は、

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$
(2.5)

を選ぶ。ただし、 $\mu^2 < 0$ かつ $\lambda > 0$ とし、 $\phi(x)$ の真空期待値 ϕ_0 は、

$$\phi_0 \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v \end{pmatrix} \tag{2.6}$$

と選ぶ。

2.2.1 ゲージ・ボソンの質量

ゲージ・ボソンの質量は、 $\phi(x)$ の真空期待値 ϕ_0 を、式 (2.3)の質量に関係する項へ代入する事で同定できる。 ϕ_0 は、T=1/2、Y=1であるため、

$$\left| \left(-ig\frac{\boldsymbol{\tau}}{2} \cdot \boldsymbol{W}_{\boldsymbol{\mu}} - \frac{i}{2}g'B_{\boldsymbol{\mu}} \right) \phi \right|^{2} = \frac{1}{8} \left| \left(\begin{array}{c} gW_{\mu}^{3} + g'B_{\mu} & g(W_{\mu}^{1} - iW_{\mu}^{2}) \\ g(W_{\mu}^{1} + iW_{\mu}^{2}) & -gW_{\mu}^{3} + g'B_{\mu} \end{array} \right) \left(\begin{array}{c} 0 \\ v \end{array} \right) \right|^{2} \\
= \frac{1}{8}v^{2}g^{2}[(W_{\mu}^{1})^{2} + (W_{\mu}^{2})^{2}] + \frac{1}{8}v^{2}(g'B_{\mu} - gW_{\mu}^{3})(g'B^{\mu} - gW^{3\mu}) \\
= \left(\frac{1}{2}vg \right)^{2}W_{\mu}^{+}W^{-\mu} + \frac{1}{8}v^{2}(W_{\mu}^{3}, B_{\mu}) \left(\begin{array}{c} g^{2} & -gg' \\ -gg' & g'^{2} \end{array} \right) \left(\begin{array}{c} W^{3\mu} \\ B^{\mu} \end{array} \right) \\$$
(2.7)

ここで、 $W^{\pm} = (W^1 \mp i W^2) / \sqrt{2}$ を用いた。式 (2.7) の第一項が荷電ゲージ・ボソンの質量項である。その質量は、

$$M_W = \frac{1}{2}vg \tag{2.8}$$

が得られる。また、残りの項は W^3_μ と B_μ に関して非対角的である。

$$\frac{1}{8}v^2[g^2(W^3_{\mu})^2 - 2gg'W^3_{\mu}B^{\mu} + g'^2B^2_{\mu}] = \frac{1}{8}v^2[gW^3_{\mu} - g'B_{\mu}]^2 + 0[g'W^3_{\mu} + gB_{\mu}]^2$$
(2.9)

式 (2.7) の二行二列の行列の固有値の一つは 0 である。それを式 (2.9) に、場の一次結合の形で含めたが、第一項の一次結合とは直交している。物理的な場 Z_{μ} と A_{μ} は質量行列を対角化するので、式 (2.9) は、

$$\frac{1}{2}M_Z^2 Z_\mu^2 + \frac{1}{2}M_A^2 A_\mu^2 \tag{2.10}$$

と同定できる。場を規格化して、

$$A_{\mu} = \frac{g' W_{\mu}^3 + g B_{\mu}}{\sqrt{g^2 + g'^2}}, \quad \tilde{\zeta} \subset \tilde{\zeta} \ M_A = 0 \tag{2.11}$$

$$Z_{\mu} = \frac{gW_{\mu}^3 - g'B_{\mu}}{\sqrt{g^2 + g'^2}}, \quad \zeta \subset \mathcal{C} \ M_Z = \frac{1}{2}v\sqrt{g^2 + g'^2} \tag{2.12}$$

が得られる。ワインバーグ角 θ_W は、

$$\frac{g'}{g} = \tan \theta_W \tag{2.13}$$

であるので、これを使うと、式 (2.11)、(B.1) は、

$$A_{\mu} = \cos \theta_W B_{\mu} + \sin \theta_W W_{\mu}^3 \tag{2.14}$$

$$Z_{\mu} = -\sin\theta_W B_{\mu} + \cos\theta_W W_{\mu}^3 \tag{2.15}$$

と書くことが出来る。また、W、Zボソンの質量の間にも、

$$\frac{M_W}{M_Z} = \cos \theta_W \tag{2.16}$$

が得られる。

2.2.2 フェルミオンの質量

フェルミオンの質量もヒッグス二重項から与えられる。例えばレプトンの質量は、ラグランジ アンに次の *SU*(2)×*U*(1) 不変な項を入れる。

$$\mathcal{L}_3 = -g_{f\bar{f}H}[\bar{L}\phi R + \bar{R}\phi] \tag{2.17}$$

対称性を自発的に破って、

$$\phi = \sqrt{\frac{1}{2}} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix}$$
(2.18)

を式 (2.17) へ代入すると、ラグランジアンは次のようになる。

$$\mathcal{L}_{\ni} = -\frac{g_{f\bar{f}H}}{\sqrt{2}}v(\bar{L}R + \bar{R}L) - \frac{g_{f\bar{f}H}}{\sqrt{2}}(\bar{L}R + \bar{R}L)h$$
(2.19)

ここで、 $g_{f\bar{f}H}$ を、

$$m_f = \frac{g_{f\bar{f}H}v}{\sqrt{2}} \tag{2.20}$$

のように置くと、レプトンの質量が得られる。クォークの質量も同様にして生成されるが、クォー クは弱アイソスピン二重項のアップ成分に対しても質量を生成しなければならない。そのために 新しいヒッグス二重項を作らなければならない。

$$\phi_c = -i\tau_2 \phi^* = \begin{pmatrix} \bar{\phi}^0 \\ \phi^- \end{pmatrix} \longrightarrow \sqrt{\frac{1}{2}} \begin{pmatrix} v+h \\ 0 \end{pmatrix}$$
(2.21)

この自発的対称性の破れにより、クォークの質量もレプトンの質量と同様に与えられる。

2.2.3 ヒッグス粒子の質量

ヒッグス粒子の質量は、ヒッグスポテンシャルから与えられる。

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + \dots$$
(2.22)

ここで、 $\phi = v + \eta$ と自発的対称性の破れを引き起こすと、

$$m_h^2 = 2v^2\lambda \tag{2.23}$$

を得る。これから分かるように、理論からはヒッグス粒子の質量は与えられず、フェルミオンの 質量と同様に単なるパラメーターである。そのため実験的に検証されなければならない。 以上から、標準模型のラグランジアンは下のものである。

$$\mathcal{L} = -\frac{1}{4} \mathbf{W}_{\mu\nu} \cdot \mathbf{W}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \bar{L} \gamma^{\mu} \left(i \partial_{\mu} - g \frac{1}{2} \mathbf{\tau} \cdot \mathbf{W}_{\mu} - g' \frac{Y}{2} B_{\mu} \right) L + \bar{R} \gamma^{\mu} \left(i \partial_{\mu} - g' \frac{Y}{2} B_{\mu} \right) R + \left| \left(i \partial_{\mu} - g \frac{1}{2} \mathbf{\tau} \cdot \mathbf{W}_{\mu} - g' \frac{Y}{2} B_{\mu} \right) \phi \right|^{2} - V(\phi) - (G_{1} \bar{L} \phi R + G_{2} \bar{L} \phi_{c} R) + h.c$$
(2.24)

Lは左巻きフェルミオン二重項、Rは右巻きフェルミオン一重項である。第一項は、 W^{\pm} 、Z、 γ の運動エネルギーおよび自己相互作用である。第二、三項は、レプトンとクォークの運動エネルギー、およびそれらと W^{\pm} 、Z、 γ との相互作用項であり、第四項は W^{\pm} 、Z、 γ 、ヒッグス粒子の質量と結合、そして第五項は、レプトンおよびクォークの質量とヒッグス粒子との結合である。

2.2.4 ヒッグス粒子

ヒッグス場を導入することで、電磁相互作用と弱い相互作用を統一し、ゲージ・ボソンやフェル ミオンに質量を与える事ができた。ヒッグス場により、次の四種類の相互作用のみが可能となった。

- ゲージ相互作用
- 湯川相互作用
- 四スカラー相互作用
- 三スカラー相互作用

これらのうち、ゲージ相互作用はLEP実験などにより精密測定がされた。しかし、フェルミオン とヒッグス粒子の湯川相互作用や、ヒッグス粒子の自己結合である、スカラー相互作用は未だ観 測されていない。そのため、これら未確認の相互作用を観測する必要がある。

標準模型ではヒッグス粒子の質量は1TeV/c²以下であることが要求され [8]、LEP2 での直接探 索から114GeV/c²という下限も決められている [9]。LEP などの精密測定と標準模型の計算から、 95% の信頼区間 [10] でヒッグス粒子の質量は200GeV/c²以下であることが示唆されている。(図 2.1)

図 2.1: ヒッグス粒子の質量予想。横軸はヒッグス粒子の質量。縦軸は $\Delta \chi^2$

2.2.5 湯川結合

式 (2.20) に述べたように、フェルミオンの質量はヒッグス粒子との湯川結合 $g_f \bar{f} H$ に比例する。 この事から、湯川結合とフェルミオンの質量の間には次の関係が成り立つ。

$$g_{f\bar{f}H} = \frac{\sqrt{2}m_f}{v}$$

$$g_f: \mathcal{I} \times \mathcal{I} \times$$

この式から分かるように、質量起源のヒッグス場を探るためには g_fの測定を行う必要がある。この関係が成り立たなければ、標準模型を超える物理が存在する、と言える。例えば、標準模型に最低限の超対称性を拡張したモデルである、MSSM では、フェルミオンがアップ型かダウン型で、真空期待値が異なるため、湯川結合に線型性が見られず、次の関係を持つ [11]。

$$\frac{g_{b\bar{b}h,\tau^-\tau^+h}^{MSSM}}{g_{b\bar{b}h,\tau^-\tau^+h}^{SM}} = -\frac{\sin\alpha}{\cos\beta}$$
(2.26)

$$\frac{g_{t\bar{t}h}^{MSSM}}{g_{t\bar{t}h}^{SM}} = \frac{\cos\alpha}{\sin\beta}$$
(2.27)

標準模型の場合の湯川結合と、 $\tan \beta = 45$ 、 $M_A = 600 \text{GeV}/\text{c}^2$ の場合の MSSM の湯川結合は図 2.2 のようになる。LHC では、チャーム・クォークの湯川結合の測定は困難であるため、 τ 粒子とボト

図 2.2: 標準模型と MSSM での湯川結合。横軸がフェルミオンの質量。縦軸は湯川結合である。赤 い線が標準模型、水色の線が MSSM である。

ム・クォークの湯川結合だけを測定していては、標準模型でも MSSM でも線型性が見えてしまう。 そのため、フェルミオンの質量に対する線型性を議論するためには、質量の重いトップ・クォー クの湯川結合を測定する事が重要であることが分かる。

3 LHC 計画と ATLAS 実験

本章ではLHC計画と、そこで行われるATLAS実験に関して述べる。

3.1 LHC 計画

LHCは、スイス・ジュネーブ郊外にある CERN で建設中で、重心系エネルギーが $\sqrt{s} = 14TeV$ の陽子・陽子衝突型加速器である。この加速器を用いて行う実験がLHC計画である。陽子・陽電子のほうが反応が単純なため、クリーンな反応が得られるが、それを用いない理由は、円運動をする荷電粒子は、シンクロトロン放射を起こしてエネルギーを失うためである。加速粒子が電子の場合、一周当りに失うエネルギーは

となり、電子の質量が軽いため、ビームのエネルギーの四乗でエネルギーを損失する。リング半 径を大きくすれば損失を抑える事ができるが、コストや用地の確保という大きな問題がある。一 方、陽子の質量は電子の約二千倍であるため、放射光によるエネルギー損失は無視できるほど小 さくなる。

一方、我々が興味のある反応は、粒子と反粒子の対消滅により起きる。陽子・陽子では反粒子 が存在しないため、陽子・反陽子を用いなければならないと考えられる。しかし、高エネルギー の陽子内には陽子を構成するバレンス・クォーク(アップ、ダウン・クォーク)だけでなく、シー・ クォークと呼ばれるクォーク・反クォーク対も存在する。そのため、反陽子を作らなくても、陽子 同士の衝突で粒子・反粒子対の反応が起きる。また、シー・クォーク以外にも陽子内ではグルオ ンが最も多く存在するので、グルオン同士の反応も観測できる。さらに反陽子の生成は陽子の生 成に比べて効率が非常に悪いので、高いルミノシティーを達成するのが困難である。

LHC の主なパラメータを表 3.1 にまとめる。このような値を選んだ理由を幾つか説明する。

(a) ビームのエネルギー

 $W_L W_L$ 散乱のユニタリティー条件から、ヒッグス粒子の質量は 1TeV/c² より軽い事が分かっている。したがって 1TeV/c² のヒッグス粒子を観測するために必要なビームのエネルギーがどれくらい必要か推測する。その時の反応は図 3.1 である。

まず二つの W ボソンで質量が 1TeV/² のヒッグス粒子を作るために、一つの W ボソンの必要なエネルギーは $E_W \sim 500 GeV$ である。そこで、エネルギーが 500GeV の W ボソンを生成するために、必要なクォークのエネルギーは $E_{quark} \sim 1TeV$ である。しかし、クォークの持つエネルギーは陽子の持つエネルギーの 1/6 ほどである。そのため、必要な陽子のエネルギーは $E_{proton} \sim 6TeV$ となる。

ビームのエネルギー	7	TeV
主リングの周長	27	km
ルミノシティー	10^{34}	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$
積分ルミノシティー	100	$\rm fb^{-1}/year$
磁場	8.33	Tesla
衝突頻度	40.08	MHz
陽子/バンチ	1.1×10^{11}	
バンチ間隔	24.95	ns

表 3.1: LHC 加速器のパラメーター。

したがって、陽子のエネルギーが最低でも 7TeV ならば、質量が 1TeV/² のヒッグス粒子の 生成も可能となる。

図 3.1: 陽子・陽子衝突の概略図

(b) 主リングの周長

LHC の主リングが、LEP トンネルを再利用したものであるためである。

(c) ルミノシティー

ヒッグス粒子の質量が 1TeV/c² の時でも、図 3.1 の反応が観測できるだけのルミノシティーが 必要である。ベクトル・ボソン融合でヒッグス粒子を生成し ($\sigma \simeq 100 fb$)、Higgs 粒子が Z ボ ソン対に崩壊する過程 (崩壊比 $\simeq 30\%$)を使って観測する。この過程を使う理由は、1TeV/c² のヒッグス粒子を生成するためには、反応を起こす粒子には約 1TeV のエネルギーが必要と なる。しかしそのようなエネルギーを持つシー・クォークはほとんど存在せず、バレンス・ クォークが主である。ベクトル・ボソン融合は、バレンス・クォーク同士の反応でも起こる ため、LHCでヒッグス粒子生成の断面積が最も大きいグルオン・グルオン融合と同程度の 断面積を持つようになる。しかし、グルオン・グルオン融合過程はヒッグス粒子の生成によ る粒子しか、大きい横方向の運動量を持たないため、バックグラウンドの排除が難しい。一 方、ベクトル・ボソン融合過程は、ベクトル・ボソンを放出したクォークが、検出器前方方 向で放出したベクトル・ボソンの質量の約半分という大きさの横方向運動量を持つという特 徴がある。また、前方方向に放出されたジェットの間には、他のジェットが存在しないとい う特徴もあるため、バックグラウンドの排除が可能である。そのためベクトル・ボソン融合 で生成される過程を考えるのである。ヒッグス粒子がZボソン対に崩壊する過程を考えるの は、崩壊比が約 30% と大きいことと、Zボソン対がレプトン対に崩壊する過程を考えると、 信号がクリーンかつヒッグス粒子の質量を再構築できるからである。そこで、 $ZZ \rightarrow 4\mu$ 、4e、 $2e + 2\mu$ のイベントを選ぶとする (崩壊比 $\simeq 0.4\%$)。すると一年に 10 イベント観測するた めに必要なルミノシティー $L[cm^{-2}s^{-1}]$ は、

イベント/year =
$$L \cdot \sigma \cdot$$
崩壊比
 $L[cm^{-2}s^{-1}] \simeq \frac{10}{100[fb] \times (0.3 \times 0.004) \times 3 \times 10^{7}[s]}$
 $\simeq \frac{10}{100 \times 10^{-39}[cm^{2}] \times 10^{-3} \times 10^{7}[s]}$
 $\simeq 10^{34}$

したがって、 $L = 10^{34} [cm^{-2}s^{-1}]$ のルミノシティーが必要となる。

(d) 超伝導磁石の磁場

主リングの周長は 24km であるから、荷電粒子は曲率半径が約 $\rho \sim 4km$ の円軌道を描くことになる。エネルギーが 7TeV の荷電粒子がこの円軌道を維持するために必要な磁場の強さ Bは

$$p[GeV/c] = 0.3 \ \rho[m] \ B[T]$$
 (3.2)

$$B[T] = \frac{p[TeV/c]}{0.3\rho[km]}$$
(3.3)

$$= \frac{7}{0.3 \times 4} \tag{3.4}$$

 ~ 6 (3.5)

したがって最低でも 6Tesla の磁場が必要であるが、余裕を持たせるように、8.33Tesla の磁場が作る事ができる超伝導磁石を使用する。

LHC は高エネルギー、高ルミノシティーであるため、ヒッグス粒子の探索、トップ・クォーク、 Bメソンの物理、W/Z ボソンの性質のさらなる精密測定が可能である。他にも標準模型を超える 新しい物理の有力候補である超対称性 (SUSY) の存在を示唆する、SUSY 粒子の探索なども可能 である。 しかし、LHC はハドロンコライダーであるためヒッグス粒子生成のシグナルイベントに対して、 表 3.2 にあるようにバックグランドイベントが桁違いに多い。そのためバックグランドの除去が重 要課題となる。また、陽子・陽子の非弾性散乱が一回の衝突当りに 23 イベントほど起こるため、 パイル・アップが起こる。このようなイベントはミニマム・バイアス・イベントと呼ばれる。そ のために検出器の分解能に悪影響を及ぼす。

相互作用の種類	断面積 [barn]
p-p 非弾性散乱	10^{-3}
強い相互作用	10^{-6}
電弱相互作用	10^{-9}
ヒッグス粒子の生成	10^{-12}

表 3.2: 各相互作用の断面積。

図 3.2 は LHC の概要である。メインリングには四つの衝突点があり、各衝突点には汎用検出器の ATLAS、CMS、ボトム・クォークの物理のための LHC-b、重粒子衝突の反応を見る ALICE が 設置される。

図 3.2: LHC リング。メインリングには四つの衝突点があり、そこに検出器が置かれる。図中の赤線は陽子、水色は反陽子、緑は重イオンの流れである。

3.2 運動学的物理量

本節では高エネルギー物理学で使う物理量である P_T 、 η 、 \mathcal{E}_T 、 ΔR について説明をする。 加速器で用いる座標系は図 3.3 のものがある。原点は検出器中央で、ビーム軸をz軸、主リング 中心方向をx軸、垂直方向をy軸とする座標 (図 3.3 上段左図)。後述する P_T を測定する際には、 x軸からの角度を ϕ とする $r-\phi$ 座標 (図 3.3 上段右図) が使われる。検出器のどの方向で粒子が検出 されたか議論する際には、y-z平面 (図 3.3 下側段図) が使われる。ただしz軸からの角度を θ とす る。そして粒子間の距離を議論する際には検出器を $\eta - \phi$ 平面に広げた座標 (図 3.3 下段右図) が 用いられる。

図 3.3: xyz 座標系 (上側左図)。 \mathbf{r} - ϕ 平面 (上側右図)。 \mathbf{y} -z 平面において z 軸から y 軸への角度を θ とする (下側左図)。検出器の $\eta - \phi$ 平面 (下側右図)

3.2.1 横方向運動量 P_T

ハドロンコライダーでは反応する粒子のz方向の運動量が分からない。しかし、x、y方向の運動量は0もしくは無視できるほど小さいので、運動量のx、y成分の合成である横方向の運動量 P_T

$$P_T = \sqrt{(P_T \cos \phi)^2 + (P_T \sin \phi)^2}$$
(3.6)

は反応の前後で保存される。LHC で興味のある物理現象は、反応間の遷移運動量が大きい。そのため終状態の粒子のビーム軸に対する運動量、つまり P_T は大きくなる。そのため P_T がトリガー 条件として利用されている。

3.2.2 擬ラピディティー η

ラピディティーとは、

$$y \equiv \frac{1}{2} \ln \left(\frac{E + P_Z}{E - P_Z} \right) = \ln \left(\frac{E + P_Z}{m_T} \right) = tanh^{-1} \left(\frac{P_z}{E} \right)$$
(3.7)

で定義される量であり、z軸方向のローレンツ変換に対して

$$\mathbf{y} \longrightarrow \mathbf{y} + \tanh^{-1} \beta \tag{3.8}$$

が成り立つ。したがって *dN*/*dy* はローレンツ不変な量である。またラピディティーは粒子の縦方 向と横方向を記述するのに役立つ。

ここで、粒子の質量を無視する (P ≫ m) と、ラピディティーは

$$y \simeq \frac{1}{2} \ln\left(\frac{E + E\cos\theta}{E - E\cos\theta}\right) = \frac{1}{2} \ln\left(\frac{1}{\tan^2\left(\frac{\theta}{2}\right)}\right) = -\ln\tan\left(\frac{\theta}{2}\right) \equiv \eta$$
 (3.9)

と近似できる。質量を無視したラピディティーは擬ラピディティー η と呼ばれる。加速器実験では、ミニマム・バイアス・イベントによる $dN/d\eta$ は $-3 \le \eta \le 3$ の領域でほぼ一定である。

3.2.3 消失運動量

反応前の粒子は横方向の運動量 P_T をほとんど持たない。したがって終状態の粒子の E_T を足し 合わせると0になるはずである。しかし図 3.4 のように、0 にはならずにある方向に運動量を持つ 場合がある。これは、ニュートリノなどの検出器で測定できない粒子が持つ運動量が含まれてい ないためである。この運動量を消失運動量 p_T と呼ぶ。そのような粒子が一つのみ存在するなら ば、ニュートリノは消失運動量とは逆方向に飛んで行ったと考えることができる。しかし、二つ 以上存在する場合では、それぞれの運動量を正確に決定する事は出来ない。

図 3.4: 消失運動量

3.2.4 コーン ΔR

コーン ΔR とは、擬ラピディティーと方位角 ϕ で見た距離であり、次のように定義される。(3.3 下段右図)

$$\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \tag{3.10}$$

粒子間の距離や、ジェットを構築する際に使われる。しかし式 (3.9) のηの定義から分かるように、 ηの間隔は均一ではなく、ビーム軸に近付くほど間隔が狭くなる。

3.3 ATLAS 検出器

前に述べたように、汎用型検出器である ATLAS 検出器は LHC に設置される検出器の一つである。ATLAS は LHC で起こる物理現象を捉えるために次のような特徴を持っている。

- 単体でも十分な精度でミュー粒子の運動量や位置が測定可能なミュー粒子スペクトロメーターを持つ。
- 光子・電子の識別、そのエネルギー、位置を精度良く測定する電磁カロリメーターを備えている。ハドロンカロリメーターは消失運動量を測定するために生成される粒子を洩れなく検出できるようにビームパイプ間近まで覆っている。
- ボトム・クォークやタウ粒子起源のジェットや、電子と光子の識別が高い効率で行えるよう
 に、高精度な飛跡検出器を持つ。

LHC は 25ns に一回衝突するため、パイル・アップを無くすために高速な読み出しも要求される。 ATLAS 検出器は、衝突点に近いほうから、内部飛跡検出器、電磁カロリメーター、ハドロンカ ロリメーター、ミュー粒子検出器で構成されている。ATLAS の全体図は図 3.5 であり、各検出器 の特徴を表 3.3 にまとめる。飛跡検出器の精度は数 10μm を誇る。また、電磁カロリメーターで は 100GeV の光子のエネルギー分解能は 1.2% という精度の高さを達成している。ハドロンカロ リメーターは全方位を囲んでおり、100GeV のジェットのエネルギー分解能はバレル、前方部では 5.8%、超前方部では 14% となる。

図 3.5: ATLAS 検出器。長さ 44m、高さ 22m の汎用検出器。内部飛跡検出器、電磁カロリメー ター、ハドロンカロリメーター、ミュー粒子検出器と二種類の超伝導磁石で構成されている。

検出器	種類	位置	ラピディティー領域	性能、分解能
内部飛跡検出器	ピクセル	バレル部	$ \eta < 1.7$	ピクセルサイズ
		前方部	$1.7 < \eta < 2.5$	$50\mu\mathrm{m}{\times}400\mu\mathrm{m}$
	マイクロストリップ	バレル部	$ \eta < 1.4$	ストリップ間隔
		前方部	$1.4 < \eta < 2.5$	$80 \mu { m m}$
	遷移放射飛跡	バレル部	$ \eta < 0.7$	分解能
		前方部	$0.7 < \eta < 2.5$	$170 \mu { m m}$
電磁力ロリメーター	液体アルゴン	バレル部	$ \eta < 3.2$	
	(アコーディオン)			$rac{10\%}{\sqrt{E}}~\oplus~0.7\%$
ハドロンカロリメーター	シンチレーティングタイル	バレル部	$ \eta < 1.7$	$\frac{50\%}{\sqrt{E}} \oplus 4\%$
	液体アルゴン	前方部	$1.5 < \eta < 3.2$	$\frac{50\%}{\sqrt{E}} \oplus 4\%$
		超前方部	$3.1 < \eta < 4.9$	$rac{75\%}{\sqrt{E}} \oplus 5\%$
ミュー粒子検出器	ドリフトチェンバー	最外層	$ \eta < 2.4$	10%(1 TeV)

表 3.3: ATLAS を構成する検出器の種類、位置、η、性能。

荷電粒子の運動量を測定するために、二種類の超伝導電磁石が使われている。一つは内部飛跡 検出器全体を囲むソレノイドであり、ビーム軸に平行に2Teslaの磁場を供給する。荷電粒子の飛 跡は磁場により曲げられ、その曲率半径から粒子の運動量、飛跡の曲がり方で電荷が測定できる。 しかし、ソレノイドは電磁カロリメーターの前に置かれるため、ソレノイドの物質により、電子 の制動輻射や対消滅などが起きる。それにより電磁カロリメーターのエネルギー分解能が悪化し てしまう。そのためソレノイドの物質量は出来るだけ少ない事が望まれ、バレル部では1放射長 を切る物質量が達成されている。

もう一つの電磁石はトロイダルコイルである。トロイダルコイルはハドロンカロリメーターの 外側に取り付けられ、ハドロンカロリメーターを通り抜けた荷電粒子(主にミュー粒子)の飛跡を 曲げる。トロイダルコイルは空芯の超伝導磁石である。これにより、多重散乱の効果を最小限に抑 えることができる。他にもミュー粒子の測定可能ラピディティー領域を広くとれるという利点を 持つ。トロイダルコイルは構造上、磁場の大きさは場所により異なるが、最大で4Teslaに達する。

4 LHCでのヒッグス粒子の生成、崩壊過程

本章ではLHC での標準模型におけるヒッグス粒子の生成、崩壊過程に関して説明する。そして 本研究で解析を行った、ヒッグス粒子がトップ・クォーク対に付随して生成され、ヒッグス粒子が 二つの ⁷ 粒子に崩壊するチャンネルに関して説明する。

4.1 ヒッグス粒子の生成過程

LHC での標準模型でのヒッグス粒子の主な生成過程は図 4.1 にあるように、グルオン・グルオン融合、ベクトル・ボソン融合 (VBF)、W/Z ボソンに付随な生成、ttH 生成の四つである [12]。 各過程の反応断面積は図 4.2 であり [13]、以下に各生成過程の特徴を述べる。

図 4.1: ヒッグス粒子の主な生成過程: (a) グルオン・グルオン融合、 (b) ベクトル・ボソン融合、 (c) $t\bar{t}H$ 生成、 (d)W/Z ボソンに付随な生成。

図 4.2: ヒッグス粒子の生成断面積。横軸はヒッグス粒子の質量、縦軸は生成断面積 (pb)。実線: グルオン・グルオン融合、点線: ベクトル・ボソン融合、薄線: t*t*H 生成、破線: W ボソンに付随 な生成

(1) グルオン・グルオン融合

グルオンは質量を持たないためヒッグス粒子との結合は存在しない。しかしトップ・クォークやボトム・クォークというカラー荷を持ち、質量の大きいフェルミオンのループを解してヒッグス粒子を生成する過程である。高エネルギーの陽子内にはグルオンが最も多く存在するので、この生成過程の断面積が最も大きく、ヒッグス粒子の質量が160*GeV/c*²では約20pbである。しかしヒッグス粒子の質量が重くなると、グルオンの持つエネルギーもより大きくなければならなくなる。しかしそのようなグルオンの数自体が減っていくので生成断面積も小さくなっていく。図4.2において、 $M_H = 350 GeV/c^2$ 近辺に平坦な部分が存在するのは、loopに主に寄与しているトップ・クォークの質量の二倍に相当するためである。

特徴

ヒッグス粒子しか生成されないため、ヒッグス粒子の崩壊から出てきた粒子以外は大き な *P*_T を持つ粒子が存在しない。そのためバックグランドの排除が厳しい過程である。

(2) ベクトル・ボソン融合

二つのクォークが弱い相互作用で放出した二つのゲージ・ボソン (W/Z) が融合してヒッグ ス粒子が生成される過程である。反応断面積はヒッグス粒子の質量が 160*GeV/c²* の場合に 3.5pb と比較的大きい。また、もともと陽子内に存在するアップ・クォークやダウン・クォー ク (バレンス・クォーク) が反応するため、高いエネルギーが必要でも、そのようなクォー クの存在確率はそれほど小さくならない。そのためヒッグス粒子の質量が大きくなっても、 反応断面積の減少が他の過程に比べるとゆるやかである。

特徴

ゲージ・ボソンを放出して反跳したクオークは、前方検出器でジェットとして観測される。そのジェットは放出したゲージ・ボソンの質量の約半分という大きな *P*_T を持つ。 もう一方のクォークも反対方向、つまり後方検出器で測定される。また、ゲージ・ボソン同士の反応なのでカラー荷の交換が無い。そのため前後方に出たジェットの間には他のジェットが存在しない。

これらの点から、この生成過程はヒッグス粒子の発見に有力であるため、近年活発に研 究されている [14]- [16]。

(3) *ttH* 生成

対生成されたトップ・クォークから、ヒッグス粒子が放出される過程である。陽子内に数多 く存在するグルオンによる反応だが、トップ・クォーク対とヒッグス粒子を生成しなければ ならない。そのため多くのエネルギーが必要であるので反応断面積は小さい。ヒッグス粒子 が160*GeV/c²*の時には、約510*GeV/c²*のエネルギーが必要となり、反応断面積は0.16pb で ある。

特徴

トップ・クォーク対を終状態に含んでいるので、トップ・クォークの不変質量の要求 によりバックグランドの除去が可能である。しかし終状態に少なくとも8種類のフェル ミオンが存在するため、解析が困難という問題点もある。

(4) W/Z ボソンに付随な生成

クォーク、反クォークの対消滅で生成されたゲージ・ボソンから、更にヒッグス粒子が放射される過程である。陽子には反クォークは含まれないので、シー・クォークである反クォークと クォークが反応する事になる。そのため反応断面積は小さくなり、ヒッグス粒子が $160 GeV/c^2$ のときに 1.2pb となる。陽子・反陽子衝突型加速器である Tevatron($\sqrt{s} = 1.96 TeV$)では、この過程が主な生成過程になる。

特徴

終状態に三個のゲージ・ボソン (W/Z) が観測される。

4.2 ヒッグス粒子の崩壊過程

次にヒッグス粒子の崩壊過程に関して述べる。ヒッグス粒子は大抵の場合は直接、粒子対に崩壊する。しかし光子とヒッグス粒子の結合は存在しないので、ヒッグス粒子が光子へ崩壊する際、 トップ・クォーク、ボトム・クォーク、Wボソンなどをループとして崩壊する。ヒッグス粒子の 崩壊幅は式 (4.1)-(4.4) のように書ける [17]。

$$\Gamma(H \to f\bar{f}) = \frac{N_c G_F m_f^2 M_H}{4\pi\sqrt{2}} \left(1 - \frac{4m_f^2}{M_H^2}\right)^{3/2}$$
(4.1)

$$\Gamma(H \to W^+ W^-) = \frac{G_F M_H^3}{8\pi\sqrt{2}} \left(1 - \frac{4M_W^2}{M_H^2}\right)^{1/2} \left(1 - \frac{4M_W^2}{M_H^2} + \frac{12M_W^4}{M_H^4}\right)$$
(4.2)

$$\Gamma(H \to ZZ) = \frac{G_F M_H^3 M_W^2}{16\pi\sqrt{2}M_Z^2} \left(1 - \frac{4M_Z^2}{M_H^2}\right)^{1/2} \left(1 - \frac{4M_Z^2}{M_H^2} + \frac{12M_W^4}{M_H^4}\right)$$
(4.3)

$$\Gamma(H \to \gamma\gamma) = \frac{\alpha^2 G_F M_H^3}{128\sqrt{2}\pi^3} \left| \sum_q 3e_q^2 I_q \left(\frac{m_q^2}{M_H^2}\right) + I_W \left(\frac{M_W^2}{M_H^2}\right) \right|^2 \tag{4.4}$$

G_F:フェルミ結合定数 m_f:フェルミオンの質量 M_H:ヒッグス粒子の質量 M_W:Wボソンの質量

M_Z: *Z*ボソンの質量

ヒッグス粒子の質量と、各粒子への崩壊比の関係は図4.3のようになり、以下の事が言える。

(a) $115 < M_H < 130 GeV/c^2$

ヒッグス粒子のボトム・クォーク対 $(b\bar{b})$ への崩壊が主要である。 $\tau^{-}\tau^{+}$ 、 $c\bar{c}$ への崩壊もあるが、式 (4.1) にあるように、フェルミオンへの崩壊比は質量の二乗にする。またカラー因子 (N_{c}) にも比例するため、質量が $4GeV/c^{2}$ のボトム・クォークへの崩壊比が最も大きくなる。

(b) $130 < M_H < 200 GeV/c^2$

 W^+W^- への崩壊比が増えていき、ヒッグス粒子の質量がWボソンの質量の二倍である 160GeV/c²の時にほぼ100%となり、その後は約70%になる。また、ZZへの崩壊比も同 じように上昇していき、 $M_H = 160GeV/c^2$ の時には下がるが、その後は約30%の崩壊比と なる。式 (4.2)、(4.3)から分かるように、 $Br(H \rightarrow W^+W^-)$: $Br(H \rightarrow ZZ) = 2:1$ となる。

(c) $M_H > 200 GeV/c^2$

 M_H が350 GeV/c^2 になると、 $t\bar{t}$ への崩壊が可能となる。しかしフェルミオンへの崩壊が M_H に比例するのに対し、ゲージ・ボソンへの崩壊は M_H^3 に比例するので、 $t\bar{t}$ への崩壊が W^+W^- 、ZZを上回る崩壊比を得ることはない。

図 4.3: ヒッグス粒子の崩壊比。横軸はヒッグス粒子の質量、縦軸は各粒子対への崩壊比で、1 に 規格化されている。また、点線がゲージボソン対、実線はフェルミオン対への崩壊比である。

4.3 $t\bar{t}H$ 、 $H \rightarrow \tau^- \tau^+$ チャンネル

今回解析を行ったのは、 $t\bar{t}H$ production で生成されたヒッグス粒子が、 $\tau^{-}\tau^{+}$ に崩壊するチャン ネルである。ヒッグス粒子の質量が 120*GeV*/ c^{2} の時、その反応断面積は

$$\sigma \cdot Br(H \to \tau^- \tau^+) = 42.3fb \tag{4.5}$$

とそれほど大きくない。以下にヶ粒子と、このチャンネルの終状態について述べる。

4.4 *τ* 粒子

表??にあるように、 τ^{-} 粒子はレプトンの一種で、スピンが1/2、電荷が-eの粒子であり、 τ 粒子と同世代の粒子は ν_{τ} である。 τ 粒子の質量は1.777 GeV/c^{2} 、平均寿命は $\tau_{\tau} = 290.6 \times 10^{-15}sec$ で、 τ 粒子が光速に近い速度を持っていたとすると、生成されてから $c\tau = 87.1 \mu m$ だけ走った後に崩壊する。 τ 粒子の主な崩壊過程を表 4.1にまとめる。表 4.1において、上の二つの崩壊をレプト

	終状態	崩壊比 (%)
$\tau^- \longrightarrow$	$\mu^- \bar{ u_\mu} u_ au$	17.4
	$e^- \bar{\nu_e} \nu_{\tau}$	17.8
	$\pi^- u_{ au}$	11.1
	$\pi^-\pi^0 u_ au$	25.4
	$\pi^-\pi^0\pi^0 u_ au$	9.4
	$\pi^-\pi^+\pi^-\nu_\tau$	9.5
	$\pi^-\pi^+\pi^-\pi^0\nu_\tau$	9.5

表 4.1: *τ* 粒子の崩壊過程と、その崩壊比。*τ* 粒子の崩壊は lepton への崩壊と hadron(*π* 粒子) へ崩 壊という二種類に分類できる。

ニック崩壊、残りはハドロニック崩壊である。ハドロニック崩壊で観測される粒子は一つのジェットを構成し、これを ₇ ジェットと呼ぶ。ハドロニック崩壊の内、上の三つは1 プロング、下の二つは 3 プロングである。これは飛跡検出器において荷電粒子のみがその飛跡を残す事に由来している。この事から、 ₇ ジェットを識別する際に、ジェットの飛跡の数が一本または三本という要求を課している。この ₇ – *ID* の方法に関しては付録 A で述べる。以上から検出器で検出する ₇ 粒子の崩壊比は、

$$\tau^{-} \longrightarrow l^{-} + \bar{\nu}_{l} + \nu_{\tau}(l:e,\mu) \qquad 35\%$$

$$\tau - jet + \nu_{\tau} \qquad 65\% \qquad (4.6)$$

となる。 τ^+ 粒子の崩壊過程は、 τ^- 粒子の崩壊において粒子を反粒子に置き換えればよく、崩壊 比は全く同じである。

4.5 終状態

前節では τ 粒子の崩壊過程について述べたが、今節では $t\bar{t}H$ 、 $H \to \tau^- \tau^+$ チャンネルの終状態 について述べる。トップ・クォークは生成後すぐ (約 4.6 × 10⁻²⁵ sec) にボトム・クォークと W^+ ボソンへ崩壊するので、観測にかかる崩壊としては下の二つである。

$t \longrightarrow bjj \ (j: light flavor quark jet)$	67 % ハドロニック崩壊	
$bl^+ u_l \ (l:e,\mu)$	22 % レプトニック崩壊	(4.7)

ボトム・クォークのジェットである b ジェットの識別方法については付録 B に述べる。上の過程の 崩壊比を足しても 100 %にならないのは、レプトニック崩壊において、 τ 粒子への崩壊を考慮に入 れないためである。したがって、 $t\bar{t}H$ 、 $H \to \tau^- \tau^+$ の終状態は図 4.2 のように九種類存在する。

	\mathbf{t}	\mathbf{t}	au	au	崩壊比	
$ttH \rightarrow bWbW \tau \tau \longrightarrow$	bjj	bjj	$\tau\text{-jet}~\nu$	$\tau\text{-jet}~\nu$	18 %	
	bjj	bjj	$\tau\text{-jet}~\nu$	$l \nu \nu$	20 %	
	bjj	bjj	$l \nu \nu$	l u u	5 %	
	bjj	$\mathrm{b}l\nu$	$\tau\text{-jet}~\nu$	$\tau\text{-jet}~\nu$	13~%	
	bjj	$\mathrm{b}l\nu$	$\tau\text{-jet}~\nu$	$l \nu \nu$	14 %	
	bjj	$\mathrm{b}l\nu$	$l \nu \nu$	$\tau\text{-jet}~\nu$	4 %	
	$\mathrm{b}l\nu$	$\mathrm{b}l\nu$	$\tau\text{-jet}~\nu$	$\tau\text{-jet}~\nu$	2 %	
	$\mathrm{b} l \nu$	$\mathrm{b}l\nu$	$\tau\text{-jet}~\nu$	l u u	2 %	
	$\mathrm{b} l \nu$	$\mathrm{b}l\nu$	l u u	l u u	0.6~%	

表 4.2: $t\bar{t}H$ 、 $H \rightarrow \tau^{-}\tau^{+}$ チャンネルの終状態。lは e か μ で、粒子、反粒子の区別はしていない。

本研究では、崩壊比が大きいという事と ATLAS のトリガー条件を考慮に入れて

 $ttH \rightarrow bWbW\tau\tau \longrightarrow bjj \qquad bl\nu \qquad \tau - jet\nu \qquad l\nu\nu \qquad 2 \ \nu \mathcal{I} \ \nu \vee \cdot \Xi - \mathcal{F}$ $bl\nu \qquad bl\nu \qquad \tau - jet\nu \qquad l\nu\nu \qquad 3 \ \nu \mathcal{I} \ \nu \vee \cdot \Xi - \mathcal{F} \qquad (4.8)$

の二つの終状態の解析を行った。これより後では上の終状態を**2レプトン・モード**、下の終状態 を**3レプトン・モード**と呼ぶことにする。

5 イベントの構築

 $t\bar{t}H, H \to \tau^- \tau^+$ チャンネルのファインマン・ダイアグラムは図 5.1 のようになる。W ボソン、 τ 粒子ともに質量が大きいため、さらに他の粒子に崩壊するが、前説で述べた、2 レプトン・モー ドと tri-lepton mode の解析を行った。

図 5.1: $t\bar{t}H, H \rightarrow \tau^- \tau^+$ チャンネルのファインマン・ダイアグラム

ヒッグス粒子の質量と断面積の関係は表 5.1 のように変化する。ヒッグス粒子の質量が重くなる につれて、 $H \rightarrow W^+W^-$ チャンネルへの崩壊が開けてくるので、信号の断面積が小さくなる。その ため、115 $\leq M_H \leq 130 GeV/c^2$ の領域において、このチャンネルでトップ・クォークとの湯川結 合を精度良く測定する事が可能である。

M_H	$115 GeV/c^2$	$120 GeV/c^2$	$125 GeV/c^2$	$130 GeV/c^2$	$140 GeV/c^2$
断面積	52.1fb	42.3fb	33.3fb	25.2fb	$12.7 \mathrm{fb}$

表 5.1: ヒッグス粒子の質量と $t\bar{t}H, H \rightarrow \tau^- \tau^+$ チャンネルの断面積

また、このチャンネルでのバックグラウンドとなりうる過程としては

 $t\bar{t}H(H\rightarrow WW), t\bar{t}, t\bar{t}Z, t\bar{t}W, t\bar{t}WW$

が考えられる。 $t\bar{t}H, H \rightarrow WW$ チャンネルは、ヒッグス粒子の発見としてはシグナルである。しか しヒッグス粒子の崩壊による W ボソンが τ 粒子に崩壊すると、終状態が全く同じになってしまう ため、このチャンネルでの湯川結合の測定の際にはバックグラウンドとなる。 $t\bar{t}Z, t\bar{t}WW$ も終状 態がシグナルと全く同じになるので、イベントセレクションで数を落とすのが困難である。また、 tt、ttW はシグナルと終状態が異なるので、イベントとの分別を付ける事は可能である。だが後 述するようにtt はその断面積がシグナルの約一万倍ととても大きいので、十分に落とす必要があ る。ここでシグナル、バックグラウンドのモンテカルロ・データを生成した時の、断面積とイベ ント・ジェネレーターは表 5.2 のようになる。

process	断面積	イベントジェネレーター,PDF, Q^2
$t\bar{t}H, H \to \tau^- \tau^+ (M_H = 115 GeV/c^2)$	52.1fb	PYTHIA6.2 [18]+TAUOLA [19]
$t\bar{t}H, H \to \tau^- \tau^+ (M_H = 140 GeV/c^2)$	$12.7 \mathrm{fb}$	CTEQ5L [20], $Q^2 = P_{T_{top}}^2 + M_{top}^2$
$t\bar{t}H, H \rightarrow W^-W^+(M_H = 115 GeV/c^2)$	49.9fb	PYTHIA6.2+TAUOLA
$t\bar{t}H, H \rightarrow W^-W^+(M_H = 140 GeV/c^2)$	$164 \mathrm{fb}$	$\text{CTEQ5L}, Q^2 = P_{T_{top}}^2 + M_{top}^2$
$t\bar{t}$	492pb	PYTHIA6.2+TAUOLA
		$CTEQ5L, Q^2 = P_{T_{top}}^2 + M_{top}^2$
$tar{t}Z$	$656 \mathrm{fb}$	COMPHEP4.1 [21]+PYTHIA6.2
$t\bar{t}W$	$468 \mathrm{fb}$	+TAUOLA, CTEQ5L
$t\bar{t}WW$	9.0fb	$Q^2 = \frac{1}{3}(P_{T_{top}}^2 + P_{T_{top}}^2 + P_{T_{bottom}}^2)$
		$+\frac{1}{2}(M_{top}^2 + M_{top}^2 + M_{bottom}^2)$

表 5.2: 使用した各過程のモンテカルロデータと断面積、イベントジェネレーター

表 5.2 にある **PDF** とは「<u>Parton</u><u>D</u>istribution <u>F</u>unction」の略であり、エネルギーが 7TeV で の陽子内のグルオン,バレンス・クォーク,シー・クォークが、あるエネルギーを持つ確率分布を 表す。Q² とは反応する粒子間での遷移運動量である。Q² が大きい反応ほどハードプロセスであ り、その反応の起こる確率が小さくなるといえる。

検出器の分解能などは関数化 (ATLFAST 付録 C 参照) し、生成したモンテカルロデータへ反映 させている。

5.1 共通のイベントセレクション

この節では、2 レプトン・モード、3 レプトン・モードで共通のイベントセレクションについて 述べる。

5.1.1 孤立したレプトン

レプトンとは、

- $P_T^{electron} > 5GeV/c, P_T^{\mu} > 6GeV/c, |\eta| < 2.5$
- ジェットのクラスターから $\Delta R = 0.4$ 以上離れている。

• レプトンから $\Delta R = 0.2$ のコーン内の、カロリメータのセルの全エネルギーが 10GeV 以下

という条件を満たすもので、**孤立したレプトン**と呼ぶ。しかしレプトンには、Bメソンのセミ・ レプトニック崩壊によるものもありうる。図 5.2 にあるように、ボトム・クォークが生成される と、ハドロン化して Bメソンとなる。ここで一つめのバーテックスが出来る。Bメソンは寿命が 比較的長いので、一つめのバーテックスから離れた場所で Dメソンと、レプトン又はジェットへ と崩壊し、二つめのバーテックスを作る。そのようなレプトンの周囲には、Bメソンのハドロン

図 5.2: b ジェットの描像。

化起源の荷電粒子が存在するはずである。そこで B メソン起源のレプトンを排除するために、次の条件を要求する。

• レプトンの $\Delta R = 0.2$ のコーン内に、 $P_T \ge 3GeV/c$ の荷電粒子が存在しない。(図 5.3)

この条件を要求する事により、ミニマムバイアス起源の $P_T \ge 3GeV/c$ の荷電粒子がコーン内に入ってしまうこともあるが、その確率は約9%である [22]。

図 5.3: レプトンの isolation 条件。B メソンの崩壊起源の孤立したレプトンを排除するために、 $\Delta R=0.2$ のコーン内に、 P_T が 3GeV 以上のトラックが存在したら、孤立したレプトンとはみなさ なくする。

5.1.2 孤立したレプトンとジェットの選択

 μ 粒子、電子の P_T 分布は、それぞれ図 5.4、5.5 のようになる。また、軽いクォークのジェット (以下 q ジェット)、b ジェットの P_T 分布を図 5.6、5.7 に示す。

これらの図から分かるように、シグナルとバックグラウンドの分布にそれほど大きな違いが無いので、以下の条件を満たす事を要求した。

1. 孤立したレプトン

 μ 粒子

 $- P_T \ge 15 GeV/c, \quad |\eta| \le 2.5$

- 電子
 - $P_T \ge 20 GeV/c, \quad |\eta| \le 2.5$

2. ジェット

• qジェット

 $-P_T \ge 15 GeV/c, \quad |\eta| \le 4.5$

• bジェット

-
$$P_T \ge 15 GeV/c$$
, $|\eta| \le 2.5$
• τ ジェット
- $P_T \ge 45 GeV/c$

μ 粒子と電子の P_T の要求は、ATLAS 検出器のトリガー条件を満たしている。また、レプトンとb、 τ ジェットの識別にシリコン・マイクロ・ストリップ飛跡検出器 (SCT) が不可欠なので、第3章で述べたように SCT の存在する領域であるという条件から、 $|\eta| \le 2.5$ としている。q ジェットに関しては、ハドロン・カロリメーターがカバーしている $|\eta| \le 4.5$ という要求ができる。図 5.8 にシグナルイベントでの real,fake τ ジェットの P_T 分布を示す。この図から fake τ ジェットは P_T が低いほど多く存在していることが分かる。この fake τ ジェットを十分に落とすために、 τ ジェットに関しては $P_T \ge 45 GeV/c$ と高く要求している。 τ ジェットの η は二つの mode で、異なる条件を課しているので後述する。

図 5.4: μ 粒子の P_T 分布。横軸は μ 粒子の P_T 。図 5.5: 電子の P_T 分布。横軸は μ 粒子の P_T 。 縦軸は 10GeV/c 毎のイベント数で、1 で規格化 縦軸は 10GeV/c 毎のイベント数で、1 で規格化 している。 している。

図 5.6: q ジェットの P_T 分布。

図 5.7: b ジェットの P_T 分布。

横軸はqジェットの P_T 。縦軸は10GeV/c 毎のイ 横軸はbジェットの P_T 。縦軸は10GeV/c 毎のイ ベント数で、1で規格化している。

ベント数で、1で規格化している。

図 5.8: τ ジェットの P_T 分布。横軸は τ ジェットの P_T 。縦軸は $\int Ldt = 300 \text{fb}^{-1}$ での 10 GeV/c 毎 のイベント数。黄色が本物の ィジェット。青は間違ってタグ付けされた ィジェット。

5.2 2レプトン・モード

2レプトン・モードは

ttH \rightarrow bWbW $\tau\tau \rightarrow bjj bl\nu \tau$ -jet $\nu l\nu\nu$

のように崩壊する過程であり、以下のカットを要求した。

5.2.1 τ ジェットの η

 $\tau ジェットの \eta 分布は図 5.9 のようになる。シグナルは主に検出器の中央付近 (\eta = 0) に出ているが、バックグラウンド、特に tī では前後方方向 (|\eta| = 2.5) に多く分布している。これは前方方向に出た、大きい <math>P_T$ を持つ q ジェットを τ ジェットとして間違えて識別したためであると考えられる。このバックグラウンドを排除するために、次の条件を要求する。

• $|\eta^{\tau \not \lor x \neg \flat}| \le 1.5$

図 5.9: τ ジェットの η 分布。横軸は τ ジェットの 図 5.10: シグナルでのqジェットの本数。横軸は P_T 。縦軸は 0.2 毎のイベント数で、1 で規格化し qジェットの本数。縦軸は $\int Ldt = 300 \text{fb}^{-1}$ でのイ ている。 ベント数。

5.2.2 孤立したレプトン,ジェットの数

イベントセレクションを満たす孤立したレプトンとジェットの数に対して以下の要求をする。

- $N_{\mathcal{VI}\mathcal{V}} = 2$ $(N_{\mathcal{VI}\mathcal{V}} = N_{\mu} + N_{e})$
- $N_q \not i_{xy} \not \ge 2$, $N_b \not i_{xy} \not = 2$, $N_\tau \not i_{xy} \not = 1$

 $q ジェットは本来ならば二本だけ存在すればよい。しかし図 5.10 のように、<math>P_T \ge 15 GeV/c$ の qジェットは、LHC では始状態や終状態での輻射として発生する。そのため、二本のみという厳し い要求では過度にイベントを落としてしまうので、二本以上という要求を課している。

5.2.3 レプトンの電荷

このチャンネルで最も問題となるバックグラウンドは、*tī*である。2 レプトン・モードでこれまでのイベントセレクションで残っている *tī*は、図 5.11 のようなファインマン・ダイアグラムであると考えられる。

図 5.11: *tī* の終状態。孤立したレプトンは二つと も W ボソン起源。

q ジェットは ISR や FSR の物を拾う。 FSR などで放出された q ジェットを、 τ ジェットと識別

図 5.12: 二つのレプトンの電荷の和。横軸は電 荷の和、縦軸は ∫ *Ldt*=300fb⁻¹ でのイベント数。 黄:シグナル、青:tī、緑:tīZ、赤:tīW

図 5.11 では、二つの孤立したレプトンの電荷は逆であるため、電荷の和は0になる。このこと からイベントセレクションに残った、孤立したレプトンの電荷の和を見てみると図 5.12 のように なる。この分布から次の条件を要求する。

• $\sum_{i}^{N_{\nu \mathcal{I} \wedge \nu}} Q_i = \pm 2$ Q: アイソレイトなレプトンの電荷

この条件により、シグナルと *tī* のイベント数が同じオーダーにする事が出来る。それでも残っている *tī* は、一つのレプトンが孤立化の条件を満たした B メソンのセミ・レプトニック崩壊によるものである、と考えられる。

5.2.4 *M_W*, *M_{top}* 質量・ウィンドウ

2 レプトン・モードでは、一つのトップ・クォークが、 $t \rightarrow bW \rightarrow bjj$ と崩壊する。故に二つの q ジェット、その二つの q ジェットと b ジェットの四元運動量から、W ボソンとトップ・クォークの 不変質量を組む事が可能である。二つの q ジェットと b ジェットで、トップ・クォークの不変質量 を組むと図 5.13 のようになる。シグナルだけでなくバックグラウンドも $M_{top} = 175 GeV/c^2$ 付近 にピークが立つ。これは、バックグラウンドにもトップ・クォークが存在するためである。

図 5.13: シグナル、バックグラウンドでの再構築したトップ・クォークの質量分布。横軸は M_{bjj} 、縦軸は $\int Ldt = 300 \text{fb}^{-1}$ での 10GeV/c² 毎のイベント数。

したがって再構成した不変質量と、実際の質量 $(M_W = 80.419 GeV/c^2, M_{top} = 175 GeV/c^2)$ の 差に対して次の条件を課す。

• $|M_{ii} - M_W| \le 30 GeV/c$ を満たす q ジェットの組が少なくとも一つ存在。

|M_{bjj} - M_{top}| ≤ 30GeV/c
 ただしqジェットは上の条件を満たすもの。

5.2.5 $M_{\tau \vec{y}_{\pi \gamma} \vdash \nu \gamma \vdash \nu}$

ここで次のカットを要求する。

以上のカットを要求した後に、 τ ジェットと、孤立したレプトンで不変質量を組む。レプトンには 必ず二つ候補がいるが、 $\Delta R(\tau$ ジェット,レプトン)が小さいものを選ぶ。この理由は、今はヒッグ ス粒子の質量が軽いので、ローレンツ・ブーストされていると考えられるからである。そのため、 ヒッグス粒子の崩壊により生じる τ 粒子同士も同じ方向に出る。さらに、 τ 粒子の質量が軽いの で、その崩壊により生じる粒子は、元の τ ジェットの方向に出るためである。図 5.14 に、 τ ジェッ トと、それに近い孤立したレプトンで組んだ不変質量分布を示す。 $M_H = 115 GeV/c^2$ であるが、

図 5.14: 再構築したしたヒッグス粒子の質量分布。縦軸は 300*fb⁻¹* での 10GeV/c2 毎のイベント数。

シグナルの分布が $M_H = 115 GeV/c^2$ にピークを持たないのは、 τ 粒子の崩壊には必ず ν_{τ} が存在 し、 ν が持つエネルギーを考慮に入れていないためである。

5.3 3レプトン・モード

3レプトン・モードは

ttH \rightarrow bWbW $\tau\tau \rightarrow bl\nu \ bl\nu \ \tau$ -jet $\nu \ l\nu\nu$

上ののように崩壊する。このモードではトップ・クォークからのWボソンが共にレプトンへ崩 壊するため、Wボソンの不変質量を組むことができない。さらに3レプトン・モードへの崩壊比 が2%と小さいので、 *τ*ジェットの η も |η| < 2.5 という緩い条件を課している。そのため、バック グラウンドの排除が難しく思われるが、終状態に3個の孤立したレプトン、二本のbジェットが存 在するという過程自体が稀なので、これらの基本的な要求によりバックグラウンドを排除できる。 このモードで要求したカットを以下に述べる。

5.3.1 孤立したレプトンとジェットの数

イベントセレクションの条件を満たす 孤立したレプトンとジェットの数に次の条件を要求した。

- $N_{\nu \sigma b \nu} = 3$
- $N_b \not i_{x,y,b} = 2$, $N_\tau \not i_{x,y,b} = 1$

終状態に q ジェットは存在しないが、q ジェット veto は要求しない。

5.3.2 孤立したレプトンと *τ* ジェットの電荷

このモードでは、三つの孤立したレプトンとィジェットに対して、次の条件を課す事ができる。

• $\sum Q = 0$, Q: レプトン、 τ ジェットの電荷

電荷の和の分布は図 5.15 のようになる。

5.3.3 *M_Z***VETO**

図 5.15 より、3 レプトン・モードでの主なバックグラウンドは、*tīZ* であることが分かる。この 段階で残っている *tīZ* は、図 5.16 のように、Z ボソンがレプトンに崩壊したものも含まれる。崩 壊前後での**電荷、フレーバー保存則**が必ず成り立つため、Z ボソンの崩壊からの二つのレプトン は**電荷が逆で、フレーバーが同じ**である。

そこで、三つの孤立したレプトンの内、電荷が逆でフレーバーが同じというレプトン対で不変 質量を組むと図 5.17 のように、 $t\bar{t}Z$ では $M_Z = 91.2 GeV/c^2$ 付近にピークを持った。シグナルで はこのようなレプトン対があったとしても何の関係も無いため、不変質量を組んでもほぼ一様に 分布している。そのため、次の条件を課した。

• $|M_{l,l} - M_Z| > 10 GeV/c^2$

図 5.15: 三つの孤立したレプトンと τ ジェットの電荷の和。縦軸は $\int Ldt = 300 fb^{-1}$ でのイベント 数 を示してある。

図 5.16: ttZのファインマン・ダイアグラム。

図 5.17: 電荷が逆、フレーバーが同じ孤立した レプトン対の不変質量。横軸は不変質量、縦軸は $\int Ldt=300$ fb⁻¹での 5GeV/c² 毎のイベント数。

この要求により ttZ バックグラウンドの排除が可能である。以上のカットを要求した後に、 ィジェットと、三つの孤立したレプトンのうち電荷が逆で最も近いもので不変質量を組んだ分布は、図 5.18 のようになった。

図 5.18: τ ジェットとレプトンで組んだ不変質量分布。横軸が不変質量、縦軸は $\int Ldt = 300 \text{fb}^{-1}$ で のイベント数。

5.4 結果

 $115 GeV/c^2 \leq M_H \leq 140 GeV/c^2$ 、 $\int L dt = 300 f b^{-1}$ で、di-lepton, 3 レプトン・モードの各カットでのイベント数は表 5.3-5.6 のようになった。

M_H	115G	eV/c^2	120G	eV/c^2	130G	eV/c^2	140G	eV/c^2
$H \rightarrow$	au au	WW						
$N_{\mathcal{VIVY}} = 2$	1713	1302	1411	1967	862	3469	446	4666
$N_q \not\!$	1670	1281	1376	1940	842	3427	436	4613
$N_b \not \!$	444	390	359	588	222	1072	116	1442
$N_{\tau \not \! \! \stackrel{\sim}{\mathcal{Y}}_{ \not \! \stackrel{\sim}{\mathcal{T}} \not \! {\mathcal{Y}}} = 1$	59.2	10.0	49.5	14.7	31.4	33.1	18.1	42.6
$\sum Q^{\nu \mathcal{I} \vdash \nu} = \pm 2$	21.5	3.2	18.9	5.1	11.9	12.2	7.3	16.0
M_W ウィンドウ	17.9	2.7	16.2	4.4	10.0	10.2	6.3	13.8
$M_t op$ ウィンドウ	13.9	2.3	12.9	3.5	8.1	7.5	5.0	10.8
$Q_{\tau \vec{\mathcal{Y}}_{\mathcal{I}\mathcal{Y}} \flat} + Q_{ \nu \vec{\mathcal{I}} \flat \mathcal{Y}} = 0$	13.4	1.8	12.5	2.4	7.9	5.8	4.9	8.1

表 5.3: 2 レプトン・モードで $t\bar{t}H, H \rightarrow \tau\tau, WW$ の各カットでのイベント数 ($\int Ldt = 300 f b^{-1}$)。

	$t\bar{t}$	$t\bar{t}Z$	$t\bar{t}W$	$t\bar{t}WW$
$N_{\mathcal{VJ}\mathcal{VJ}\mathcal{V}}=2$	4240390	10531	8661	270
$N_q \not \!$	3503400	10155	8189	268
$N_b \not \!$	452997	2731	2055	82.8
$N_\tau \not\!$	1331	74.1	26.0	2.4
$\sum Q^{\mathcal{VT}\mathcal{V}\mathcal{V}} = \pm 2$	62.7	7.7	9.9	0.4
M_W ウィンドウ	48.4	6.3	7.8	0.4
$M_t op$ ウィンドウ	30.0	4.1	6.0	0
$Q_{\tau \not \forall x \forall y } + Q_{\nu \not \forall \flat \nu} = 0$	18.1	3.7	5.1	0

表 5.4: 2 レプトン・モードでバックグラウンドの各カットでのイベント数 ($\int Ldt = 300 fb^{-1}$)

二つのモードを足し合わせ、LHC のもう一つの実験である CMS でも同様の結果が得られると 仮定する ($\int Ldt = 600 fb^{-1}$)と、 $t\bar{t}H, H \rightarrow \tau\tau$ チャンネルの観測されるイベント数は表 5.7 であ る。これらのイベント数を用いてトップ・クォークの湯川結合の不定性を評価するのだが、その 際に重要なのは S/B の値である。後述するが系統誤差は S/B の値に依存にしており、S/B が大 きいほど系統誤差は小さくなる。 $t\bar{t}H, \rightarrow \tau\tau$ チャンネルは統計量はそれほど多くないので、S/ \sqrt{B} は小さいが、S/B が大きいのでトップ・クォークの湯川結合の測定に関して重要な過程であると 言える。

M_H	$115 GeV/c^2$		120G	GeV/c^2 1300		eV/c^2	$140 GeV/c^2$	
$H \rightarrow$	au au	WW	au au	WW	au au	WW	au au	WW
$N_{\mathcal{VIVY}} = 3$	246	166	204	256	101	468	54.3	655
$N_b \not \!$	53.4	43.4	47.0	66.4	23.6	119	12.8	177
$N_{\tau \not\!$	4.6	1.2	4.1	1.5	2.3	2.9	1.2	4.0
$\sum \mathbf{Q} = 0$	4.4	0.9	3.8	1.0	2.2	1.7	1.1	2.4
M_Z veto	3.7	0.9	3.3	0.9	1.8	1.5	1.0	2.2

表 5.5: 3 レプトン・モードで $t\bar{t}H, H \rightarrow \tau \tau, WW$ の各カットでのイベント数 ($\int Ldt = 300 fb^{-1}$)。

	$t\overline{t}$	$t\bar{t}Z$	$t\bar{t}W$	$t\bar{t}WW$
$N_{\mathcal{VT}\mathcal{VY}} = 3$	15986	1859	606	33.5
$N_b \not \!$	423	499	105	9.0
$N_{\tau \not\!$	4.5	11.6	0.7	0.4
$\sum \mathbf{Q} = 0$	2.3	8.2	0.1	0.4
M_Z veto	2.3	1.6	0.1	0

表 5.6: 3 レプトン・モードでバックグラウンドの各カットでのイベント数 ($\int Ldt = 300 fb^{-1}$)。

M_H	$115 GeV/c^2$	$120 GeV/c^2$	$130 GeV/c^2$	$140 GeV/c^2$
Signal	34.2	31.6	19.4	11.8
Background	67.2	68.4	76.4	82.4
S/\sqrt{B} (Poisson)	4.2	3.8	2.2	1.3
S/B	0.5	0.5	0.3	0.1

表 5.7: $\int L dt = 600 f b^{-1}$ でのイベント数

5.5 湯川結合の不定性の評価

前節で得たイベント数を用いて、トップ・クォークの湯川結合がどの程度の不定性を持つか評価する。まず、湯川結合を測定するには断面積 σ を測定しなければならない。断面積は結合定数の二乗に比例するので次の関係を持つ。

$$\sigma(t\bar{t}H, H \to \tau\tau) \propto Y_{top}^2 \cdot Y_{\tau}^2 \tag{5.1}$$

$$\frac{\Delta\sigma}{\sigma} = 2\frac{\Delta Y_{top}}{Y_{top}} \tag{5.2}$$

$$\frac{\Delta Y_{top}}{Y_{top}} = \frac{1}{2} \frac{\Delta \sigma}{\sigma}$$
(5.3)

したがって、湯川結合の不定性は、断面積の不定性の半分となる。

断面積の不定性が実験的にどのように計算されるか述べる。以下の各イベント数のうち、二つ 分かっているとする。

 N_S : event selection 後のシグナルの数

 N_B : event selection 後のバックグラウンドの数

 N_{S+B} : event selection 後のシグナル + バックグラウンドの数

実際の実験データで得るのは N_{S+B} であり、 N_B としてシミュレーションから予想される $\langle N_B \rangle$ を用いる。

今は実験データではなくモンテカルロで生成したサンプルなので、 $N_S \ge N_B$ が分かっている。 そこで実験データから計算される不定性 ($N_{S+B} \ge N_B$ で表されるもの) を、 $N_S \ge N_B$ で不定性を 計算する。

積分ルミノシティーL、シグナルのカットの効率 es を用いると、

$$N_S = \epsilon_s \cdot L \cdot \sigma \tag{5.4}$$

$$\sigma = \frac{N_S}{\epsilon_s \cdot L} \tag{5.5}$$

である。式 (5.5) から断面積の不定性は、

$$\frac{\Delta\sigma}{\sigma} = \frac{\Delta N_S}{N_S} \oplus \frac{\Delta\epsilon_s}{\epsilon_s} \oplus \frac{\Delta L}{L}$$
(5.6)

$$\simeq \frac{\Delta N_S}{N_S} \oplus \frac{\Delta \epsilon_s}{\epsilon_s} \tag{5.7}$$

ルミノシティーの不定性は約 2~5%と予想されるので今は無視した。また、 N_S を N_{S+B} と N_B で書き直すと、

$$N_S = N_{S+B} + N_B \tag{5.8}$$

$$= (N_S + N_B) + N_B (5.9)$$

であるから、

$$\Delta N_S = \Delta (N_S + N_B) + \Delta N_B \tag{5.10}$$

$$=\sqrt{N_S + N_B} \oplus \Delta N_B \tag{5.11}$$

式 (5.7)、 (5.11) より

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{N_S + N_B}}{N_S} \oplus \frac{\Delta N_B}{N_S} \oplus \frac{\Delta\epsilon_S}{\epsilon_S}$$
(5.12)

$$= \frac{\sqrt{N_S + N_B}}{N_S} \oplus \frac{N_B}{N_S} \frac{\Delta \epsilon_B}{\epsilon_B} \oplus \frac{\Delta \epsilon_S}{\epsilon_S}$$
(5.13)

となる。今はバックグラウンドの数の不定性が分からないので、

$$\frac{\Delta\epsilon_B}{\epsilon_B} = 10, 20, 30\% \tag{5.14}$$

とする。この仮定のもとで表 5.7 の結果を使い、このチャンネルでのトップ・クォークの湯川結合 がどの程度の不定性を持つか評価した結果は表 5.8 のようになった。

		$115 GeV/c^2$	$120 GeV/c^2$	$130 GeV/c^2$	$140 GeV/c^2$
$\frac{\Delta \epsilon_B}{\epsilon_B} =$	10%	19%	19%	32%	54%
D	20%	25%	27%	47%	81%
	30%	33%	36%	64%	113%

表 5.8: Y_{top} の不定性。 M_H =115、120、130、140GeV/c² で、 $\Delta \epsilon_B / \epsilon_B$ =10、20、30%の場合を考慮した。

図 5.19: $t\bar{t}H, H \to \tau^- \tau^+$ チャンネルでのトップ・クォークの湯川結合の不定性。横軸はヒッグス 粒子の質量。縦軸は湯川結合の相対的な不定性である。

6 結論

モンテカルロシミュレーションで生成したデータを用いて、 $t\bar{t}H$ 、 $H \rightarrow \tau^- \tau^+$ チャンネルの解析 を行った。

ヒッグス粒子の質量が 115GeV/c² の場合、LHC のデザインルミノシティーでの三年分のデー タ量で、このチャンネルによりトップ・クォークの湯川結合がバックグラウンドのイベント数の不 定性を 20% とすると、25% の精度で決定できることが分かった。

また、ヒッグス粒子の質量が 115~130GeV/c² であれば、このチャンネルでトップ・クォークの湯川結合が 25~47% の精度で測定可能である。このことから、 $t\bar{t}H$ 、 $H \rightarrow \tau^- \tau^+$ チャンネルは湯川結合の測定に有効なチャンネルである。

測定精度をさらに良くするため、 τ -IDを改良する必要がある。本研究で用いた τ -IDは、 τ ジェットがqジェットに比べて形がシャープであるという特徴を使っている。しかし、ジェットに含まれるカロリメーターのセルの数に関しては、特に考慮されておらず、この条件が τ -IDに強力な要求になる、という研究成果も出ている。ただし、その研究はファスト・シミュレーションを用いた場合である。したがって、検出器の特徴を全て考慮に入れたフル・シミュレーションにおいて、ミニマム・バイアスやノイズまでも考慮に入れた環境で調べてみなければならない。セルの数以外にも新しい条件を使う τ -IDの研究が、現在活発に行われている。

また、このチャンネルではbジェットの識別も重要である。現在は使っていない二次崩壊点の 情報を、efficiency を落とすことないように使うことができれば、このチャンネルだけではなく、 様々な物理解析に生かすことができる。

最後に、本研究ではバックグラウンドの不定性を 20% としたが、実際にどの程度の不定性にな るか研究する必要がある。

謝辞

本研究は様々な方の支えのうえに成り立っております。田中礼三郎助教授には、時に厳しく、時 はやさしく素粒子物理学の基本的な事から最先端のテーマまで、幅広く接する機会を与えてくれ た事に感謝しております。中野逸夫教授には、理解の浅い点を自分で再確認させるような温かい教 育をして頂いたことや、岡山を離れる時期が長くても快く送り出して頂いたことに感謝しており ます。高エネルギー加速器研究機構の神前純一氏には、物理解析の方法からプログラムの書き方 まで、常に心温かく対応して頂いたことに感謝しております。東京大学素粒子国際協力センター の浅井祥仁氏には、モンテカルロ・データの作成から解析方法、物理の考え方、CERN での生活 方法など数え上げてもきりが無いほど御世話になりました。また、同じく東京大学素粒子国際協 力センターの田中純一氏には、解析方法はもちろんのこと、モンテカルロ・データを準備頂いた 事に心から感謝しております。高エネルギー加速器研究機構の近藤敬比古教授には、CERN での 発表のための様々な援助をして頂けたことに感謝しております。また、ATLAS 日本グループの皆 様に感謝しております。

最後になりましたが、多大な経済的援助だけでなく、常に私の事を影で支えてくださった両親 に深く感謝致します。

付録

A τ -ID

ATLAS での *τ* ジェットの識別方法について述べる。本文の表 4.1 にもあるが、*τ* 粒子の崩壊過 程には以下のものがある。

_	終状態	崩壊比 (%)
$\tau^- \longrightarrow$	$\mu^- \bar{ u_\mu} u_ au$	17.4
	$e^- \bar{\nu_e} \nu_{\tau}$	17.8
	$\pi^- u_{ au}$	11.1
	$\pi^-\pi^0 u_ au$	25.4
	$\pi^-\pi^0\pi^0 u_ au$	9.4
	$\pi^-\pi^+\pi^-\nu_ au$	9.5
	$\pi^-\pi^+\pi^-\pi^0\nu_\tau$	9.5

これらのうち下の五個のようなハドロニック崩壊をまとめて τ ジェットという。エネルギーは電磁カロリメーターと、ハドロンカロリメーターで落としたエネルギーであり、 P_T は観測にかかった粒子の値を使う。電荷は、 $\Delta \mathbf{R} < 0.4$ に存在する飛跡から決定でき、

$$Q_{\tau-jet} = \sum_{i} |p_i| \cdot q_i \tag{A.1}$$

 $q_i: 運動量 <math>p_i$ の飛跡の電荷 (A.2)

飛跡の電荷は磁場による曲がり方で決定 (A.3)

から決定できる。

τジェットとqジェットの違いとして、

- *τ* ジェットは飛跡の本数が少ない。77% が飛跡が一本のみである。

が挙げられる。そこで、 ィジェットと q ジェットを区別するために以下の要求を課す。

1. ジェットに含まれる電磁力ロリメーターの各セルのエネルギーと、ジェットのクラスターからの距離から、

$$R_{em} = \frac{\sum_{i=1}^{n} E_{T_i} \sqrt{(\eta_i - \eta_{\mathcal{P} \ni \mathcal{A} \mathcal{P}^-})^2 + (\phi_i - \phi_{\mathcal{P} \ni \mathcal{A} \mathcal{P}^-})^2}}{\sum_{i=1}^{n} E_{T_i}}$$
(A.4)

A. τ -ID

を定義する。i はクラスターの重心から ΔR=0.7 のコーン内に含まれるセルの数。

2. クラスターに含まれる電磁力ロリメーターと、ハドロンカロリメーターのセルのエネルギー から、 $0.1 < \Delta R < 0.2$ に含まれるエネルギーの割合を求める。

$$\Delta E_T^{12} = \frac{(E_T^{\sharp \vec{w}} + E_T^{\gamma \, \flat \, \nu \, \nu})_{0.1 < \Delta R < 0.2}}{E_T^{\sharp \vec{w}} + E_T^{\gamma \, \flat \, \nu \, \nu}}$$
(A.5)

3. クラスターから $\Delta R=0.3$ に含まれ、ある閾値以上の p_T を持つ飛跡の本数として、 N_{tr} を定義する。

 τ ジェットと、qジェットの R_{em} 、 ΔE_T^{12} 、 N_{tr} 分布は、図A.1~A.6 [23] のようになる。 実際の実験ではこれらに要求する条件を変えることで、 τ ジェットの検出効率を必要な値に設定 する。ここで、検出効率 ϵ 、ジェット・リジェクションの定義は

$$\epsilon = \frac{N_{\tau} \vec{y}_{xy} \wedge \mathcal{E} \cup \tau \pm \mathbf{k} \, \mathbf{k}$$

$$1/rej. = \frac{N_{q \, \vec{y}_{xy} \, \mathsf{h} \, \mathsf{e} \, \mathsf{l} \, \mathsf{c} \, \mathsf{f} \, \mathsf{f$$

である。 R_{em} の分布はジェットの P_T に依存する (図 A.7、A.8)。そこでジェットの P_T によって要求する条件を変え、 τ ジェットの検出効率とジェット・リジェクションの関係をみたのが図 A.9 である。検出効率が大きくなるほど、ジェット・リジェクションは小さくなる。また、同じ検出効率でもジェットの P_T が大きいほど、得られるリジェクションは大きくなる。 $P_T > 30 GeV$ の τ ジェットでは、 $\epsilon = 50\%$ で、ジェット・リジェクションは 100 以上である。

本研究ではこの関係をフィットした関数を用いた。*τ ジェ*ットの検出効率は 50% とし、その時の ジェット・リジェクションを使って、q ジェットを*τ* ジェットと誤って識別するようにしている。

図 A.1: τ ジェットの R_{em} 分布。横軸は R_{em} (式 図 A.2: q ジェットの R_{em} 分布。横軸、縦軸は図 (A.4))、縦軸はイベント数。 A.1 と同様。

図 A.3: $\tau \tilde{\nu}$ ェットの ΔE_T^{12} 分布。横軸は ΔE_T^{12} (式 図 A.4: q $\tilde{\nu}$ ェットの ΔE_T^{12} 分布。横軸、縦軸は (A.5))、縦軸はイベント数。 図 A.3 と同様。

図 A.5: τ ジェットの N_{tr} 分布。横軸は $\Delta R = 0.3$ 図 A.6: q ジェットの N_{tr} 分布。横軸、縦軸は図 に含まれる飛跡の数、縦軸はイベント数。 A.5 と同様。

図 A.7: τ ジェットの R_{em} の P_T 依存。横軸は 図 A.8: q ジェットの R_{em} の P_T 依存。横軸、縦 R_{em} 、縦軸はイベント数である。 P_T の範囲で分 軸、各線の意味は図 A.7 と同様である。けており、実線が 15 < P_T <30GeV、点線が、 $30 < P_T < 70$ GeV、破線が、 $70 < P_T < 130$ GeV である。

図 A.9: τ ジェットの検出効率とジェット・リジェクションの関係。横軸が検出効率、縦軸はジェット・リジェクションである。また、ジェットの P_T によって分けており、黒い四角は $15 < P_T < 30$ GeV、白い丸は $30 < P_T < 50$ GeV、黒い丸は $50 < P_T < 70$ GeV、白い四角は $70 < P_T < 130$ GeVである。

B b-タグ

bジェットは図 B.1 にのように、反応により生成したボトム・クォークがハドロン化する際に形成するジェットと、Bメソンが崩壊してできるフェルミオンから成る。このbジェットをタグ付けする事がb-タグであり、ATLASの物理を行う上でとても重要である。

図 B.1: b-jet の描像

bジェットの関わる物理としては

- Higgs 粒子が軽い場合、その崩壊は主に bb である。
- トップ・クォークが崩壊すると、必ずボトム・クォークを含む。
- CP 非保存などの B の物理

など、とても興味深い現象ばかりであり、これらの物理のためには、高い検出効率、かつ高いジェット・リジェクションな b-タグが不可欠である。

bジェットをタグ付けする手法として以下のものがある。

1. B 中間子が崩壊するまでに約 500µm ほど飛ぶため、二次バーテックスが存在する。

2. bジェットを構成する各粒子の中に、衝突パラメーターが大きいものが存在する。

3. ジェットの近くにB中間子のセミ・レプトニック崩壊による、ソフトなレプトンが存在する。

ここで、衝突パラメーターとは、図 B.2 にあるように、ジェットを形成する飛跡へ、崩壊点から垂線を引き、その垂線の長さの事を指す。衝突パラメーターが大きいという事は、その飛跡が比較的長い寿命を持つ粒子の崩壊により生じた事を意味する。1 と 2 の方法は共にバーテックスの情報を用いている。しかし、1 は精度は良いが、検出効率が良くないため、2 の衝突パラメーターを用

図 B.2: r-φ 平面での b-jet の描像。衝突点から、それぞれの飛跡へ垂線を引く。この垂線の長さが 衝突パラメーターである。

図 B.3: 衝突パラメーターの分解能。横軸は $|\eta|$ 、図 B.4: bジェットの検出効率と、各ジェットに対 縦軸は、衝突パラメーターの分解能である。飛跡 するジェット・リジェクション。横軸がbジェットの の P_T と、飛跡の再構築方法で分類されている。検出効率、縦軸はその検出効率に対する各ジェッ 丸は $3 < P_T < 10$ GeV、四角は $P_T > 10$ GeV で トのジェット・リジェクションである。黒丸が u ある。 ジェット、白丸はグルオン・ジェット、黒い四角は cジェットである。

いた識別法を行う。図 B.3 は、衝突パラメーターの分解能である。|η| が大きいほど分解能が悪く なるのは、物質量が多くなるためである。低い *P*_T でも 50μm ほどの分解能が得られる。

衝突パラメーターの条件を変更することで、検出効率の値を変える事ができる。図 B.4 は b ジェットの検出効率と、各ジェットのジェット・リジェクションの関係である。検出効率を高くすると、他のジェットを b ジェットと間違って識別してしまう。 $\epsilon_b=60\%$ とすると、u ジェットは 100本に一本、グルオン・ジェットは 50本に一本、c ジェットは 10本に一本の割合で、b ジェットと誤って識別してしまう。c ジェットのジェット・リジェクションが小さい原因は、c ジェットがハドロナイズした結果生成する D メソンも、崩壊するまでに 300 μ m ほど飛ぶ。そのため、衝突パラメーターの大きい c ジェットが存在しうるためである。また、グルオン・ジェットも、 $g \rightarrow c\bar{c}$ 、 $b\bar{b}$ と崩壊するために、u ジェットと比べるとジェット・リジェクションが小さくなってしまう。

デザイン・ルミノシティーの 1/10 での稼働時では、 $\epsilon_b=60\%$ を用いる。しかし、デザイン・ル ミノシティーでの稼働時では、ミニマム・バイアス・イベントのため衝突パラメーターの分解能 が悪くなるため、 $\epsilon_b=50\%$ で解析を行っている。

C ATLFAST

イベントジェネレーターで生成したモンテカルロ・データには、検出器の分解能による測定誤 差などが含まれていない。そのため、検出器の構造や物質密度などを考慮に入れたデータを用い た、フル・シミュレーションを行わなければならない。しかし、フル・シミュレーションでシグナ ルやバックグラウンドの十分な量のデータを生成するためには、多大な時間が必要である。そこ で、フル・シミュレーションの結果を再現するように簡略化されたプログラムを用いる。このプ ログラムが ATLFAST [24] である。

ATLFAST では以下の事を行う。

- カロリメーター内でのジェットの構築
- レプトン、光子、ジェットの運動量やエネルギーを不鮮明 (smear) にする
- 磁場の効果や消失運動量の考慮
- bジェット、cジェットや τ ジェットをタグする効率や、他のジェットを間違ったタグ付けを する。
- ジェットの E_T の補正

これらはフル・シミュレーションの結果をパラメーター化したものを使う。また、下の二つは ATLFAST-B というプログラムを使って行っている。以下に ATLFAST で行っている事を説明 する。

C.1 P_T

 P_T はサジッタを測定して決める [25]。したがって P_T はガウス分布をせず、 $\frac{1}{P_T}$ がガウス分布を示す。そのため P_T は

$$\frac{P_{true}}{P_{smear}} = 1 + \sigma \tag{C.1}$$

$$P_{smeared}^{true} = \frac{P_{smeared}^{true}}{(1+\sigma)} \tag{C.2}$$

のように分解能の効果を入れる。ここで σ は、full simulation でパラメーター化した分解能である。

C.2 エネルギー

光子のエネルギーは電磁力ロリメーターで測定される。エネルギーは次の式を使って、実際の 検出器の応答とする。

$$\frac{\delta E_{\gamma}}{E_{\gamma}} = \frac{0.10}{\sqrt{E_{\gamma}}} \oplus \frac{0.245}{E_{\gamma}^T} \oplus 0.007 \tag{C.3}$$

ハイ・ルミノシティーではパイル・アップの効果が大きくなるので、電子回路のノイズとは別に して扱っている。

$$\frac{\delta E_{\gamma}}{E_{\gamma}} = \frac{0.10}{\sqrt{E_{\gamma}}} \oplus \frac{\sigma_{electronic}}{E_{\gamma}^{T}} \oplus \frac{\sigma_{pile-up}}{E_{\gamma}^{T}} \oplus 0.007$$
(C.4)

次に電子のエネルギーも電磁力ロリメーターで測定されるので、

$$\frac{\delta E_e}{E_e} = \frac{0.12}{\sqrt{E_e}} \oplus \frac{0.245}{E_e^T} \oplus 0.007 \tag{C.5}$$

と不鮮明にする。またハイ・ルミノシティーでは、

~ ___

$$\frac{\delta E_e}{E_e} = \frac{0.12}{\sqrt{E_e}} \oplus \frac{\sigma_{electronic}}{E_e^T} \oplus \frac{\sigma_{pile-up}}{E_e^T} \oplus 0.007 \tag{C.6}$$

となる。

ジェットのエネルギーはハドロンカロリメーターで測定される。そのためセルのサイズによって エネルギーの分解能が変わってくる。

•
$$|\eta| < 3$$
、 セルのサイズ $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

$$\frac{\delta E}{E} = \frac{0.50}{\sqrt{E}} \oplus 0.03 \tag{C.7}$$

•
$$|\eta| > 3$$
、セルのサイズ $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$

$$\frac{\delta E}{E} = \frac{1.0}{\sqrt{E}} \oplus 0.07 \tag{C.8}$$

C.3 ジェットの構築

粒子がカロリメーターを通過すると、各セルにエネルギー E_T を落とす。落とした E_T が1.5GeV より大きければ、そのセルをイニシエイターと呼ぶ。そして E_T の大きいイニシエイターの順に、 $\Delta R=0.4$ のコーン内の全てのセルのETを足して、クラスターを作る。クラスターの E_T が15GeV よりも大きければ、ジェットとみなす。

C.4 ジェットのタグ付け

前節のようにして作られたジェットの種類をタグ付けする方法は、ジェネレーターの情報を使う。 ジェットがどのクォークから生成されたものかはジェネレーターの情報を辿って行くことで判定で きる。そして、例えばbジェットと判定されたら、50%の確率でbジェットとタグ付けをし、それ 以外に対してはqジェットとタグ付けする。反対に、qジェットと判定されたジェットには、1%の 確率で b ジェットとタグ付けし、c ジェットは 10%の確率で b ジェットと間違ってタグ付けする。 τ ジェットに対しても同様な割り当て方法を行う。

C.5 ジェットの E_T の補正

構築されたジェットのエネルギーは、元のクォークの持っていたエネルギーと比べると小さくな る場合が多い。その傾向は元のクォークのエネルギーが低いほど高くなる。これは、エネルギー が低いほど元のクォークから出た粒子が様々な方向に飛びやすくなるため、クラスターの中に入 らないためである。そこでこの補正をする必要がある。図C.1は、キャリブレーション因子、

$$K_{jet} = \frac{P_T^{parton}}{P_T^{jet}} \tag{C.9}$$

の分布である。これは元のクォークの P_T の、ジェットの P_T に対する割合で、 K_{jet} が1に近いほ ど元のクォークのエネルギーを正しく集める事ができた事を表す量である。ジェットの P_T が大き いほど K_{jet} が1に近付く事が分かる。構築したジェットのエネルギーに、 K_{jet} を掛ける事でエネ ルギーの補正を行っている。

図 C.1: キャリブレーション因子の分布。実線が b ジェット、破線がグルオンジェット、点線が q ジェット。横軸は構築したジェットの P_T 、縦軸はキャリブレーション因子 $K_{jet} = P_T^{parton}/P_T^{jet}$ 。

参考文献

- [1] ATLAS Detector And Physics Performance 1 CERN/LHCC/99-14/、 (1999)
- [2] ATLAS Detector And Physics Performance 2, CERN/LHCC/99-15, (1999)
- [3] K. Hagiwara et al., *Physical Review* D66, 010001 (2002)
- [4] S. Weinberg, *Phys. Rev. Lett.* **19** (1967) 1264.
- [5] A. Salam : Elementary Particle Theory. Proc. 8th Nobel Symp., N. Svartholm, ed., Wiley-Interscience(1968)
- [6] S. Glashow, Nucl. Phys. 22 (1961) 579.
- [7] P.W. Higgs, *Phys. Lett.* **12** (1964) 132.
- [8] Benjamin W. Lee, C. Quigg, H.B. Thacker, *Phys. Rev. Lett.* **38** (1977) 883-885.
- [9] The LEP Higgs Working Group, LHWG/2001-03. (2001)
- [10] The LEP EW Working Group, LEPEWWG/2002-01. (2002)
- [11] M. Carena, H.E. Haber, hep-ph/0208209
- [12] J. F. Gunion, H. E. Haber, G. Kane, S. Dawson : The Higgs Hunter's Guide, (Addison-Waseley, California, 1990)
- [13] M. Spira, P.M. Zerwas, hep-ph/9803257, (1997)
- [14] D. Rainwater, D. Zeppenfeld, *JHEP*, **12**, (1997), 005.
- [15] D. Rainwater, D. Zeppenfeld, K. Hagiwara, *Phys. Rev.* D61, (2000), 093005.
- [16] D. Rainwater, D. Zeppenfeld, *Phys. Rev.* D60, (1999), 113004.
- [17] 田中礼三郎、 神戸大学集中講義、 「ハドロンコライダーの物理」、 (2002)
- [18] T. Sjöstrand, L. Lönnblad, S. Mrenna, P. Skands, hep-ph/0108264, (2002)
- [19] S. Jadach, Z. Was, R. Decker, J. H. Kuhn, Comput. Phys. Commun., 76, (1993), 361-380.
- [20] CTEQ Collaboration, H. L. Lai et. al., Eur. Phys. J., C12, (2000), 375-392.
- [21] A. S. Belyaev et. al., hep-ph/0101232.

- [22] 松本悠. 東京大学修士学位論文、「ATLAS 実験における ttH production を用いた Yukawa coupling 測定の研究」、 (2003)
- [23] D. Cavalli, S. Resconi, ATLAS Internal Note, PHYS-NO-118, (1998)
- [24] E. Richter-Was, D. Froidevaux, ATLAS Internal Note, ATL-PHYS-98-131, (1998)
- [25] C. Joram, Summer Student Lecture Series 2002, Particle Detectors

研究業績

平成 14 年 10 月	ATLAS Higgs Working Group meeting	CERN
平成 14 年 12 月	ATLAS Higgs Working Group meeting	CERN
平成 15 年 1 月	広島ヒグス研究会	広島大学
平成 15 年 2 月	ATLAS Higgs Working Group meeting	CERN
平成 15 年 3 月	日本物理学会	東北学院大学
平成 16 年 1 月	広島ヒグス研究会	広島大学