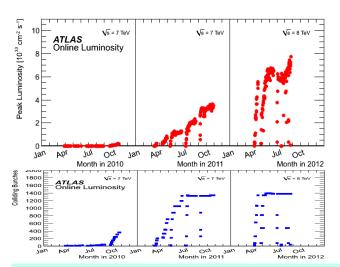


2012年 L H C の運転状況



2010年3月30日の重心系エネルギー7TeVでの初衝突以来、LHCの性能は飛躍的に向上してきました。 2011年の目標は1fb-1 (=1,000pb-1) を集めることでしたが、5fb-1以上とれました。 2012年はエネルギーを 8TeVに上げて8月末までで12fb-1集まりました。

ルミノシティの改善状況

ルミノシティの移り変わり

Oct Month in Year

2010年6月まで、徐々にバンチ数を増やしました。バン チ間隔50nsで、最大の1,380バンチに到達しました。 その後はバンチあたりの陽子数を増やしたり、ビームを さらに絞ったりすること(β*を小さくする)で、ルミノ シティを上げてきました。

	$\frac{N^2k_bf}{F} = $	$\frac{N^2k_bf\gamma}{F}$
	$\frac{1}{4\pi\sigma_{x}\sigma_{y}}r$	$4\pi\varepsilon_n\beta^*$

- バンチの数	k_b
– バンチあたりの陽子数	N ビームの数
– 規格化エミッタンス	\mathcal{E}_n
– 相対論効果(E/m ₀)	γ — ビームの質
- 衝突点でのベータ関数	β* – ビームのエネルギー
– 衝突パラメータ	F]
• 衝突角度	θ _c 衝突点のパラメータ
バンチの長さ	σ_z $(\rho_{\sigma})^2$
• 横方向の拡がり	σ^* $F=1/\sqrt{1+\left(\frac{\partial O}{\partial \sigma_x^2}\right)}$

加速器パラメータ	単位	設計値	到達値	コメント
各ビームエネルギー	TeV	7	4	2013-4年の改造後に 設計値に
バンチあたりの陽子数	1010個	11.5	16	設計値を達成
バンチの間隔	ns	25	50	
バンチの個数		2808	1380	
Emittance	μm	3.75	2.9	設計値よりよい性能
β*	m	0.55	0.6	エネルギーが高くなれ ば小さくできる
バンチのサイズ(x,y)	μm	16.7	34	
バンチの長さ(z)	cm	7.55	8.7	
衝突角度	μrad	285	240	
ルミノシティ	cm-2 s-1	1.0×10 ³⁴	7.7×10 ³³	
バンチあたりのルミノ シティ	cm-2 s-1	3.6×10 ³⁰	5.5×10 ³⁰	設計値よりよい性能
ビームのエネルギー	MJ	362	120	

LHCトリビア

- 陽子を長時間周回させる加速器のなかは、超高真空に保つ必要があります。1兆分の1気圧以下で、月面の真空度よりよ $(<10^{15} H_2/m^3 : 水素分子に換算して1m³あたり10¹⁵個以下)$
- 設計値でのビームパワーは362M J 。8両編成の電車(400トン)が時速150kmで走っている運動エネルギーに対応しま す。
- LHCの運転で使っている電力は120MW。入射加速器などを含めたCERN全体の電力使用量は230MWです。これに対して つくば市の家庭での消費電力が約50MWです。LHCで使われる電力の多くの部分は、陽子の加速のためでなく、たくさ んの超伝導磁石を冷やすための冷凍機で消費されています。
- LHCに使われている超伝導線は7μm径のNbTi線をより合わせて作ります。使われた線材をすべて合わせて伸ばすと、太 陽と地球の間の距離の10倍以上になります。