Measurement of Missing ET in ATLAS

Kenta Oe (ICEPP, University of Tokyo) DPF/JPS-06, Hawaii Oct 29 – Nov 03, 2006

Introduction

- Good measurement of Missing ET characterized by non-interactiong particles is the key to search new physics. These particle cannot be caught by detector.
	- □ SM W, Z, Higgs
	- □ SUSY lightest super-symmetric particle (LSP)
- \blacksquare It is important to understand the following
	- **D** Resolution
	- Scale
	- **Non-gaussian tail**

Right figure shows Missing ET dist. SUSY vs BG. Missing ET is good probe to new physics.

Important to reconstruct, calibrate and evaluate Missing ET

Outline

- **Neasurement of Missing ET**
- **Atlas Calorimetry**
- **Reconstruction**
	- **D** Calibration
	- **D** Noise suppression
- **Performance**
	- Scale
	- **D** Resolution
	- Tail
- **Estimation from early data**

Measurement of Missing ET

- **There are two strategy to measure Missing ET**
	- Cell base
	- o Object base
- **Drigins of Missing ET is neutrino, LSP, and gravitino etc (real Missing ET). But badly** measurement of Jet, electron etc. becomes miss-measurement of Missing ET (fake) Missing ET)
- **Default Missing ET calculation is based on cell-based method**

Cell-Base

- **- PtMiss =** ∑**PT (cell) +** ∑**PT (muon) +** ∑**PT (loss in cryostat (dead material))**
- Dead/hot/noisy cell
- □ Noise/pile-up suppression
- **Energy calibration (nonlineality, resolution)**
- □ Losses in dead materials/cracks

Object-Base

- PtMiss = ∑**PT (high Et objects, e/**γ**,** μ**,** τ**, jet) +** ∑**PT (low Et object, pion, unclustered cells)**

- \Box Individual calibrations applied to each object
- **Now development**

Atlas Calorimetry

- Full coverage $|\eta|$ <5
- **EM calorimeter** : 22-26X (radiation length), high granularity
- **Hadron calorimeter** : ~8.8 λ (interaction length)
- **e/h** : ~1.4
- σ**/E for jets in barrel**: 0.67/sqrt(E)+0.02+4.3/E

Missing ET Reconstruction

- **Atlas calorimeter cover nearly full solid angle and have good granularity,** but EtMiss is degraded by several reasons
	- **Limited coverage (** $|\eta|$ < 5)
	- **Presence of minimum bias**
	- □ Swept-out charged particles by magnetic fields
	- □ Calorimeter response (non-compensation, non-linearity)
	- □ Noise (electronics/pile-up)
	- **Energy loss in inactive materials and leak at cracks**
- **The large fraction of energy is measured by calorimeter. Calorimeter** energy calibration, energy correction and noise suppression are crucial for the best EtMiss reconstruction

Energy calibration

- Since the calorimeter is not compensated and has non-linear/non-uniform response, then need several corrections for better performance
- **A hadronic shower consists of**
	- \Box EM energy (e.g. π->γγ)
	- **u** Visible non-EM energy (e.g. dE/dx from π)
	- \Box Invisible energy (e.g. break up of nuclei)
	- **Escaped energy (e.g.** ν)
- **difference of energy density**
	- \Box High energy density denotes high EM activity
	- **Low energy density correspond to hadronic activity**
- Apply weight function

```
E'_{cell} = E_{cell} × w( E_{cell}/V_{cell} , \eta ,calorimeter)
```
 The refined approach is now used, which improves performance: Apply cell calibration weights according to the reconstructed objects (e/ γ , μ , $\tilde{\tau}$, jets) to which the cell belongs

Noise Suppression

- **C** Origins of noise are
	- **Electronics noise**
	- □ Pile-up noise
- **To suppress these noise**
	- □ Apply 2 sigma cut on expected noise level
	- **Build topological clustering from calorimeter** cells and use cells inside (default)

Electronics noise

Pile-up noise

Missing ET Scale

- Correct scale is important for Inv Mass, edge etc.
- Missing ET Shift = True Missing ET Reconstructed Missing ET
- Shift is within 5%, it is reduced applying refined calibration
- Good scale is achieved in Object-base method in high Missing ET samples

Missing ET Resolution

Ex(y)Miss Resolution is well represented by the following equation.

```
Final Ex(y)miss Resol = p0 * \sqrt{SumET}
```
Different resolution for different event topology. Different corrections should be applied for different objects (jets, e/ γ ...), but not considered.

Non-Gaussian Tails

- Detection of large EtMiss is important signature in many physics channels
- Badly measured EtMiss (fake EtMiss) is dangerous. Understanding of tail is important since they affects background uncertainty (ex. QCD multi-jet)
- *Origins of tail are*
	- *Shower leakage (shown in fig)*
	- *Fake muons*
	- *instrumental effects as hot/noisy/dead cells, cavern background, beam halo, etc*

Jet leakage from Tile/ExtTile crack, shower in muon system

Validation of resolution using Minimum Bias

- By using Minimum Bias(~300GeV) resolution can be estimated in the early stage.
- Minimum bias contain no real Missing ET. It can be useful probe to estimate resolution.
- "Out of coverage" is main resource of non-zero EtMiss in Minimum Bias event
- **Number 10 Yith topological clustering estimated resolution is consistent with truth**

Validation of using Z->ττ**->lept-had**

Estimation using W+jets

- Using Transverse mass distribution of W+jets (\sim 1TeV) at 1fb⁻¹
- simple selection exactly 1 muon with $pT > 20$ GeV and $|\eta|$ < 2.5

Express reconstructed MET(x) distribution by

$$
MEX_{\text{reco}} = \alpha \times \text{Gaus}(\text{MEX}_{\text{truth}}, \text{a})
$$

- MEX : MissingEx (reco or truth)
- α : scale factor
- $a \quad$: MEX resolution (in GeV)
	- Determine these parameters with "template method".

a(reso)=8GeV, α (scale)=0.9

Scale vs. Resolution Ex(y)Miss resolution vs SumET

 Generate pseudo-data histogram using reconstructed information

Summary

- Good measurement of Missing ET is very important for new physics (both Higgs and SUSY)
- **Missing ET performance is dominated by calorimeter resolution and energy** reconstruction
- **Resolution and Scale are improved by correcting nonlinearity response, eta** dependency and energy lost in cryostat. These can still be improved with refined calibration
- Non gaussian tails can be reduced cleaning for instrumental effects, fake muons and correcting for shower leakage, jets in cracks...
- **IMPORTANTY Important to validate/improve Missing ET performance with early data**

Backup slides

ATHENA MissingET : EtMiss Reconstruction and Calibration

(implementation in 12.0.2)

Refined MissingET: First tests

Expect improvement in samples with electrons

In $W \rightarrow eV$ EtMiss_Truth-EtMiss is better centered and resolution also improves leaving the cells in electrons at the em scale

EtMiss: dependence on Event Topology Compare different data samples **Top, SU3, Jets** from CSC

tt+njet background

Dominant background is tt+njets(lnln and lnqq), especially in high Etsum region.

Need to suppress or subtract bkg.

Scale estimation using W->ln

- **Ex(y)Miss Scale can be estimated by W(->lnu) event with 100 pb-1 of data**
- **Use ratio R = Pt(v)/Pt(l) calculated with MC. It depends on experimental cuts**
- **R** is sensitive to scale but less to resolution
- **Need to address top background**

