Measurement of Missing ET in ATLAS

Kenta Oe (ICEPP, University of Tokyo) DPF/JPS-06, Hawaii Oct 29 – Nov 03, 2006

Oct 31, 2006

Introduction

- Good measurement of Missing ET characterized by non-interactiong particles is the key to search new physics. These particle cannot be caught by detector.
 - SM W, Z, Higgs
 - SUSY lightest super-symmetric particle (LSP)
- It is important to understand the following
 - Resolution
 - Scale
 - Non-gaussian tail

Right figure shows Missing ET dist. SUSY vs BG. Missing ET is good probe to new physics.

Important to reconstruct, calibrate and evaluate Missing ET

Outline

- Measurement of Missing ET
- Atlas Calorimetry
- Reconstruction
 - Calibration
 - Noise suppression
- Performance
 - Scale
 - Resolution
 - Tail
- Estimation from early data

Measurement of Missing ET

- There are two strategy to measure Missing ET
 - Cell base
 - Object base
- Origins of Missing ET is neutrino, LSP, and gravitino etc (real Missing ET). But badly measurement of Jet, electron etc. becomes miss-measurement of Missing ET (fake Missing ET)
- Default Missing ET calculation is based on cell-based method

<u>Cell-Base</u>

- PtMiss = ΣPT (cell) + ΣPT (muon) + ΣPT (loss in cryostat (dead material))
- Dead/hot/noisy cell
- Noise/pile-up suppression
- Energy calibration (nonlineality, resolution)
- Losses in dead materials/cracks

Object-Base

- PtMiss = Σ PT (high Et objects, e/ γ , μ , τ , jet) + Σ PT (low Et object, pion, unclustered cells)

- Individual calibrations applied to each object
- Now development

Atlas Calorimetry

- Full coverage $|\eta| < 5$
- EM calorimeter : 22-26X (radiation length), high granularity
- **Hadron calorimeter** : ~8.8 λ (interaction length)
- e/h:~1.4
- σ /E for jets in barrel: 0.67/sqrt(E)+0.02+4.3/E

Missing ET Reconstruction

- Atlas calorimeter cover nearly full solid angle and have good granularity, but EtMiss is degraded by several reasons
 - Limited coverage ($|\eta| < 5$)
 - Presence of minimum bias
 - Swept-out charged particles by magnetic fields
 - Calorimeter response (non-compensation, non-linearity)
 - Noise (electronics/pile-up)
 - Energy loss in inactive materials and leak at cracks
- The large fraction of energy is measured by calorimeter. Calorimeter energy calibration, energy correction and noise suppression are crucial for the best EtMiss reconstruction

Energy calibration

- Since the calorimeter is not compensated and has non-linear/non-uniform response, then need several corrections for better performance
- A hadronic shower consists of
 - EM energy (e.g. $\pi \rightarrow \gamma \gamma$)
 - Visible non-EM energy (e.g. dE/dx from π)
 - Invisible energy (e.g. break up of nuclei)
 - Escaped energy (e.g. ν)
- difference of energy density
 - High energy density denotes high EM activity
 - Low energy density correspond to hadronic activity
- Apply weight function

```
E'_{cell} = E_{cell} \times w(E_{cell}/V_{cell}, \eta, calorimeter)
```

• The refined approach is now used, which improves performance: Apply cell calibration weights according to the reconstructed objects (e/ γ , μ , τ , jets) to which the cell belongs

Noise Suppression

- Origins of noise are
 - Electronics noise
 - Pile-up noise
- To suppress these noise
 - Apply 2 sigma cut on expected noise level
 - Build topological clustering from calorimeter cells and use cells inside (default)

Electronics noise

Pile-up noise

Missing ET Scale

- Correct scale is important for Inv Mass, edge etc.
- Missing ET Shift = True Missing ET Reconstructed Missing ET
- Shift is within 5%, it is reduced applying refined calibration
- Good scale is achieved in Object-base method in high Missing ET samples

Missing ET Resolution

Ex(y)Miss Resolution is well represented by the following equation.

```
Final Ex(y) miss Resol = p0 * \sqrt{SumET}
```

 Different resolution for different event topology. Different corrections should be applied for different objects (jets, e/ γ...), but not considered.

Non-Gaussian Tails

- Detection of large EtMiss is important signature in many physics channels
- Badly measured EtMiss (fake EtMiss) is dangerous. Understanding of tail is important since they affects background uncertainty (ex. QCD multi-jet)
- Origins of tail are
 - Shower leakage (shown in fig)
 - Fake muons
 - □ instrumental effects as hot/noisy/dead cells, cavern background, beam halo, etc

Jet leakage from Tile/ExtTile crack, shower in muon system

Validation of resolution using Minimum Bias

- By using Minimum Bias(~300GeV) resolution can be estimated in the early stage.
- Minimum bias contain no real Missing ET. It can be useful probe to estimate resolution.
- "Out of coverage" is main resource of non-zero EtMiss in Minimum Bias event
- With topological clustering estimated resolution is consistent with truth

Validation of using Z-> τ τ ->lept-had

Estimation using W+jets

- Using Transverse mass distribution of W+jets (~1TeV) at 1fb⁻¹
- simple selection exactly 1 muon with pT>20GeV and $|\eta|$ <2.5

Express reconstructed MET(x) distribution by

$$MEX_{reco} = \alpha \times Gaus(MEX_{truth}, a)$$

- MEX : MissingEx (reco or truth)
- α : scale factor
- a : MEX resolution (in GeV)
 - Determine these parameters with "template method".

Ex(y)Miss resolution vs SumET

 Generate pseudo-data histogram using reconstructed information

Scale vs. Resolution

Summary

- Good measurement of Missing ET is very important for new physics (both Higgs and SUSY)
- Missing ET performance is dominated by calorimeter resolution and energy reconstruction
- Resolution and Scale are improved by correcting nonlinearity response, eta dependency and energy lost in cryostat. These can still be improved with refined calibration
- Non gaussian tails can be reduced cleaning for instrumental effects, fake muons and correcting for shower leakage, jets in cracks...
- Important to validate/improve Missing ET performance with early data

Backup slides

(implementation in 12.0.2)

: Present defaul in MissingET

Refined MissingET: First tests

Expect improvement in samples with electrons

In $W \rightarrow ev$ EtMiss_Truth-EtMiss is better centered and resolution also improves leaving the cells in electrons at the em scale

EtMiss: dependence on Event Topology Compare different data samples Top, SU3, Jets from CSC

tt+njet background

Dominant background is tt+njets(InIn and Inqq), especially in high Etsum region.

Need to suppress or subtract bkg.

Scale estimation using W->In

- Ex(y)Miss Scale can be estimated by W(->Inu) event with 100 pb-1 of data
- Use ratio R = Pt(ν)/Pt(I) calculated with MC. It depends on experimental cuts
- R is sensitive to scale but less to resolution
- Need to address top background

