Upgrade of ATLAS silicon semiconductor tracker for the SLHC

University of Tsukuba Koki Inoue

- 1. LHC experiment and ATLAS detector
- 2. super LHC
- 3. P-bulk test samples and irradiation
- 4. IV, CV/CCE, isolation measurement results
- 5. Summary

LHC experiment and ATLAS detector

- Proton-Proton collider
- •CM energy : 14 TeV
- •Luminosity : 10³⁴ cm⁻²s⁻¹
- •Collision interval : 25 nsec
- •700 fb⁻¹ by 2014~2016

Inner detector and semiconductor tracker

SCT Radiation tolerance ~< 2x10¹⁴(1MeV-n-eq/cm²) (10 years of LHC experiment)

SCT property

N-type sensor

be fully depleted for signal readout ≻With fluence, full depletion voltage increase.

≻Operation Voltage limits the lifetime

Super-LHC

SLHC parameters

- Luminosity : 10³⁵/cm2/s
- Integrated luminosity : 3000 fb⁻¹
- Collision interval : 12.5 ns
- Particle fluence

ATLAS Inner Detector needs re-designed

- •Replace TRT with silicon detector
- •Need more rad-hard silicon detector

Developing P-type sensor

Advantage of N⁺-on-P sensor:

✓ Signal can be accumulated even under partial depletion (operational at reduced HV).

R&D goals:

✓ evaluate high resistive p-type wafers \rightarrow stability against radiation

✓ electrical isolation between N⁺ readout strips.

P-bulk test Samples for rad-hard silicon

40 samples

➤ wafer types: Floating Zone (FZ), Magnetic Czochralski (MCZ) → Next page

P-bulk P-bulk P-stop (Common, Indiv.) Wafer 7/17: irradiated to 0.7 × 10¹⁴ /cm2 (low fluence) Wafer 8/18: irradiated to 0.7 × 10¹⁵ /cm2 (high fluence)

Full depletion voltage/Micro discharge/Strip isolation are compared for FZ and MCZ samples.

Irradiation@Tohoku Univ. CYRIC

Beam profile

20 mm

4.10 -

2.05

≻70MeV protons Center position determined by position monitor Irradiate evenly by scanning the sensors Fluence evaluated by AI activation

Measurements of sensor characteristics

I-V micro discharge ?
 C-V/ CCE (Charge Collection Efficiency) evaluate full depletion voltage
 Isolation evaluate electrical isolation between readout strips

Full depletion voltage (FZ)

C-V 1/C² : plot $1/C \propto d \propto \sqrt{Vbias}$

CCE : ampl² plot $ampl \propto d \propto \sqrt{Vbias}$

Full depletion voltage (MCZ)

Full depletion voltage dependence on fluence

FZ
 ~150 V before irradiation
 Increases to ~500V after 0.7E+15

MCZ
 ~1kV before irradiation
 Decreases to ~500 V after 0.7E+13
 Vfd after 0.7E+15 ?

We have conducted more systematic irradiation: Data to be ready in a month.

I-V Curve before/after irradiation

current is about 10 uA at T= -20° C (1 cm² sensor).

Strip Isolation of FZ

dependence on p-stop concentration (before irradiation)

better than without.

Need ~2E+13 p-stop (W11)¹ to isolate (concentrations for W1/6 are not enough)

Strip Isolation of FZ after irradiation (P-stop concentration: 2E+13)

Low fluence

High fluence

IPSTP/CSTP becomes worse.

DC field plate remains OK.

isolation is still good.

Strip Isolation of FZ effectiveness of AC Field Plate

AF samples are not isolated at Vgate=0 and

HV below ~650V (non-irrad) HV below ~300V (irradiated) Isolation is achieved at Vgate~ -50V (non-irrad) ~ -10V (irradiated)

irradiation relaxes the isolation conditions

MCZ samples are all OK. Also for AC Field Plate with Vgate=0

Summary

- We have been developing radiation tolerant silicon sensors for the SLHC.
- MCZ wafer is better at present data.

Wafer type	Full depletion voltage	Micro discharge	Strip isolation
FZ	~150 V (non-irrad) ~500 V (0.7E+15)	At 800 V (non-irrad)	 Need 2E+13 P-stop concentration AC Field Voltage = -50 V
MCZ	~1k V (non-irrad) ~500 V (0.7E+14) to be re-evaluated (0.7E+15)	At 400 V (non-irrad)	All samples are good

• We have new data, covering fluence of 5E15 with 6 fluence points

Back up

Leakage Current @ Vfd

Leakage current are,

For FZ, $Ileak_{18} = 3.5 \times 10^{-4} \pm 5 \% A$ $Ileak_8 = 5.1 \times 10^{-4} \pm 8 \% A$ $Ileak_{17} = 0.69 \times 10^{-4} \pm 15 \% A$ $Ileak_7 = 4.8 \times 10^{-4} \pm 12 \% A$

For MCZ $Ileak_{18} = 4.7 \times 10^{-4} \pm 5 \% A$ $Ileak_8 = 4.0 \times 10^{-4} \pm 4 \% A$ $Ileak_{17} = 1.8 \times 10^{-4} \pm 20 \% A$ $Ileak_7 = 1.2 \times 10^{-4} \pm 6 \% A$

Damage constant

 ΔI_{Volume} $= \alpha \Phi$

Damage constant α are,

For FZ,

 $\alpha_{18} = 1.7 \times 10^{-17} \pm 5 \%$ (A/cm) $\alpha_{8} = 2.5 \times 10^{-17} \pm 8 \%$ (A/cm) $\alpha_{17} = 3.3 \times 10^{-17} \pm 15 \%$ (A/cm) $\alpha_{7} = 23 \times 10^{-17} \pm 10 \%$ (A/cm)

For MCZ,

 $\alpha_{18} = 2.2 \times 10^{-17} \pm 5 \%$ (A/cm) $\alpha_{8} = 1.9 \times 10^{-17} \pm 5 \%$ (A/cm) $\alpha_{17} = 5.8 \times 10^{-17} \pm 20 \%$ (A/cm)

 $\alpha_7 = 8.7 \times 10^{-16} \pm 5 \%$ (A/cm)

Fluence evaluation from AI activation

$$P + AI \longrightarrow {^7Be} + X$$
$$\Phi \cong \frac{N_{mes} \exp(\lambda \Delta t)}{N_t \sigma \lambda E_{eff} \Gamma}$$

Nmes : # of γ per second

- λ : ⁷Be → γ (477KeV) decay rate
- Δt : time from beam off to measurement
- N_t : # of AI atom
- $\Gamma : {^7\text{Be}} \rightarrow \gamma \text{ (477KeV)}$ Branching ratio
- σ : cross section

Eeff : SSD efficiency

Silicon detector and laser

The laser in this measurement is solid-state laser which cavity is YAG(yttrium, aluminum, garnet) crystal doped Nd (neodymium).

1064nm laser is emitted by excitation and transition of Nd³⁺ ion.

Nd:YAG laser Silicon energy gap 1064nm=1.16eV =1.12eV

- Although almost laser pass through the silicon, can create electron-hole pair in a probability. Evenly for the silicon depth.
 - Can control number of creation by adjusting light quantity.

P-stop shape

Individual

Common

