

The University of Manchester

Final Results for the Solenoid Magnetic Field Map

CERN mapping project team

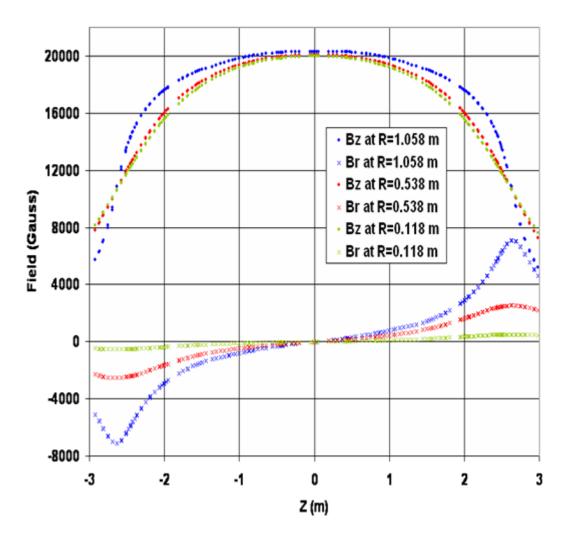
Martin Aleksa, Felix Bergsma, Laurent Chevalier, Pierre-Ange Giudici, Antoine Kehrli, Marcello Losasso, Xavier Pons, Heidi Sandaker

Map fitting by

John Hart (RAL)

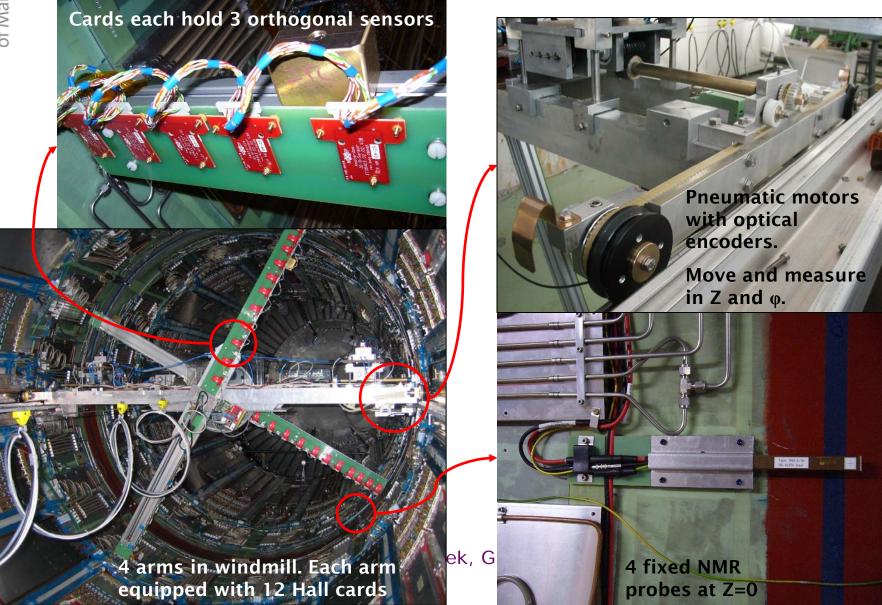
Paul S Miyagawa, Steve Snow (Manchester)

Outline



- Overview of mapping campaign
- Corrections to data
- Geometrical fit results
- Geometrical + Maxwell fit results
- Systematic errors
- Conclusions

Overview of the task



- Mapping 6m long x 2m diameter cylindrical volume
- 2 Tesla (20000 Gauss) at Z=0, dropping to 0.8 T at Z=3m
- Defines momentum scale of all ID tracks
- Require track sagitta error due to field uncertainty < 0.05%
 - Ensures that error in momentum due to field is less than error due to tracker alignment at p_T of 40 GeV

The field mapping machine

A T L A S

Data sets recorded

- Data taken at four different solenoid currents
 - Nominal current (7730
 A) gives 2 T at centre
 - Low current (5000 A) gives 1.3 T and is used with low-field probe calibration
- Fine phi scans used to measure the (tiny) perturbation of the field by the mapping machine
- Total data collected ~0.75M
 - Statistical errors will be negligible

Date in August	Current (A)	Number of φ steps	Number of Z steps
2nd-3rd	7730	16	99
3rd	7730	64	1
4th	7850	16	25
	7000	16	44
	5000	16	76
	5000	64	1
7th	7730	16	8
	7730	24	26
	7730	12	35

Corrections to data

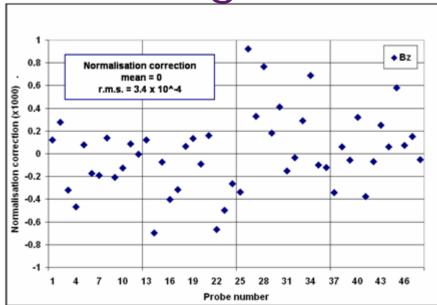
Geometrical effects

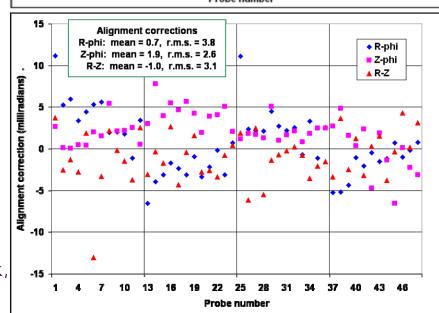
- Plenty of survey data taken before and after mapping campaign
 - Positions of individual Hall sensors can be determined to ~0.2 mm accuracy
- Mapping machine skew recorded in data
- Carriage tilts determined from data

Probe calibrations

- Response of Hall sensors calibrated as function of field strength, field orientation and temperature using test stands at CERN and Grenoble
 - Low-field calibration (up to 1.4 T) has expected accuracy of ~2 G, 2 mrad
 - High-field calibration (up to 2.5 T) has expected accuracy of ~10 G, 2 mrad
- NMR probes intrinsically accurate to 0.1 G
- Absolute scale of high-field Hall calibration improved using low-field Hall calibration and NMR values
- Relative Hall probe normalisations and alignments determined from data

Other effects

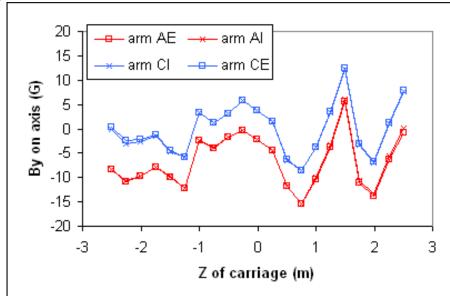

Effects of magnetic components of mapping machine corrected using magnetic dipoles

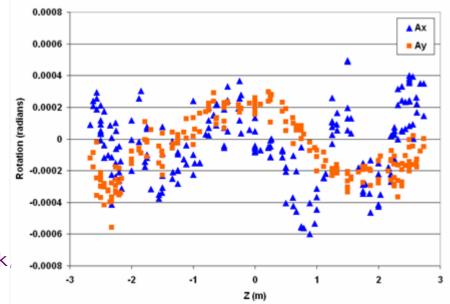

Probe normalisation and alignments

- Exploited the mathematics of Maxwell's equations to determine relative probe normalisations and alignments
- B₇ normalisation:
 - Uses the fact that each probe scans the field on the surface of a cylinder
 - B_Z at centre determined for each probe
 - All probes were then normalised to the average of these values
- Probe alignment:
 - Uses curl B = 0 and

$$B_{\varphi}^{m} = B_{\varphi} + A_{\varphi z}B_{z} - A_{r\varphi}B_{r}$$

- Integrate $\oint B_{\varphi} ds = 0$
- Tilt angles A_{ij} of probe were determined from a least squares fit
- The third alignment angle comes from div B = 0

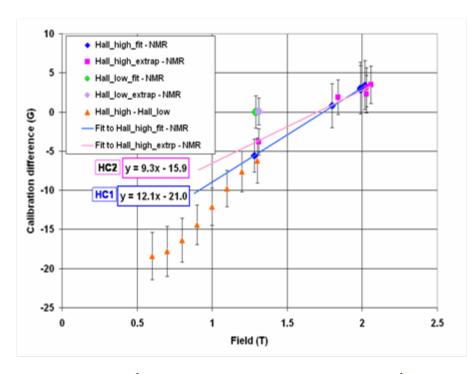

Carriage tilts



- Another analysis which exploited mathematics of Maxwell
- B_x and B_y on the z-axis evaluated from average over φ for probes near centre of solenoid
- Plots of B_x,B_y versus Z of carriage show evidence that entire carriage is tilting
- Degree of tilt can be calculated by integrating to find expected B_x, B_y value

$$\frac{\partial B_x}{\partial z} = \frac{\partial B_z}{\partial x}$$

 Jagged structure of tilts suggest that machine is going over bumps on the rail of ~0.1 mm



AT LAS

Absolute Hall scale

- Absolute scale of high-field Hall calibration (10 G) is greatest uncertainty
 - Can be improved using low-field Hall calibration (2 G) and NMR value (0.1 G)
- Low-field Hall values and NMR values are equal for 5000 A data
 - Low-field Hall values are considered accurate in low-field region
- Discrepancy between low- and high-field Hall values in low-field region

- Discrepancy between high-field Hall values (derived from field fits) and NMR value in high-field region
 - This discrepancy lines up with the discrepancy from low-field region
- Alternative high-field Hall values from extrapolation give estimate of systematic error

Fit quality measures

- We fit the map data to field models which obey Maxwell's equations
 - The volume covered has no currents and has effects of magnetic materials removed
 - Maxwell's equations become

$$\nabla \cdot B = 0$$
; $\nabla \times \underline{B} = \underline{0}$

Our fit uses Minuit to minimise

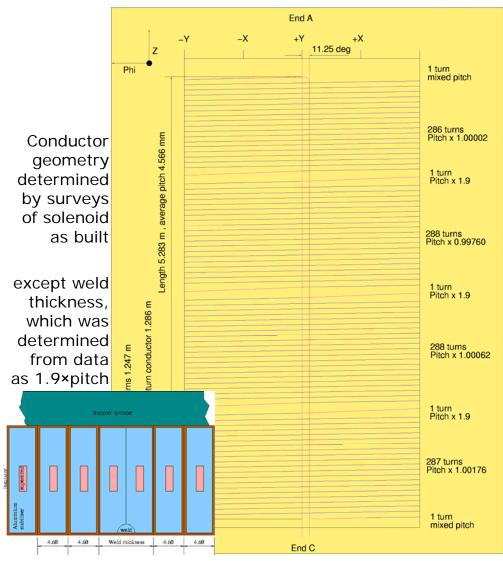
$$\chi^{2} = \sum_{\substack{i = \text{data points} \\ c = Z, R, \phi}} \left(\frac{B_{c,i}^{\text{measured}} - B_{c,i}^{\text{fit}}}{5 \text{ Gauss}} \right)^{2}$$

• Our aim is to know the track sagitta, which is proportional to $(c_r \text{ and } c_z \text{ are direction cosines})$

$$S = \int_{0}^{\max} r(r_{\text{max}} - r)(c_r B_z - c_z B_r) dl$$

• Our fit quality is defined to be $\delta S/S$ where

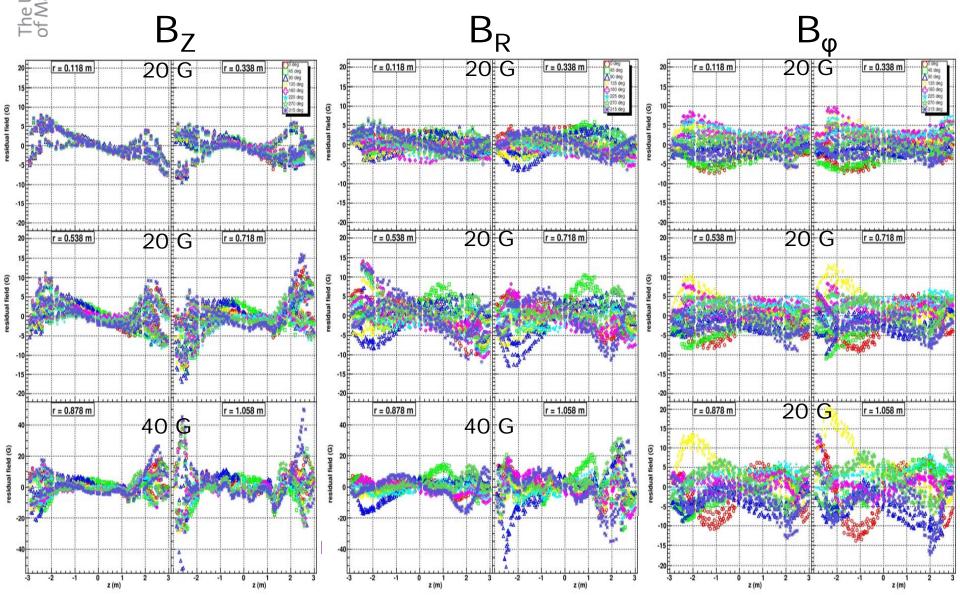
$$\delta S = \int_{0}^{r_{\text{max}}} r(r_{\text{max}} - r) \left(c_r \left(B_z^{\text{meas}} - B_z^{\text{fit}} \right) - c_z \left(B_r^{\text{meas}} - B_r^{\text{fit}} \right) \right) dl$$


Geometrical fit

- 96% of the field is directly due to the solenoid current
 - We use a detailed model of the conductor geometry and integrate Biot-Savart law using the known current
 - 7 free parameters
 - Scale factor and aspect ratio (length/diameter) of conductor model
 - Position and orientation of conductor model relative to IWV
- 4% of field is due to magnetised iron (TileCal, girders, shielding discs etc)
 - Parametrised using 4 free parameters of Fourier-Bessel series with length scale=2.5m

$$B_z = \sum_{i=1}^{4} C_i \cos(\underline{z}i) \ \underline{I} \ (\underline{r}i)$$

$$B_{r} = \sum_{i=1}^{4} C_{i} \sin(\underline{z}i) I_{1}(\underline{r}i)$$



Nanchester

Results from geometrical fit I

Results from geometrical fit II

- Residuals + sagitta error calculated for all data samples
 - 7730a used for our final fit results at nominal 2 T field
- Sagitta error rms is within our 5×10⁻⁴ target for all samples

Мар	B_Z	(G)	B_R	(G)	Β _φ (G)		δS/S (×10 ⁻⁴)	
	rms	extreme	rms	extreme	rms	extreme	rms	extreme
5000	2.96	-32.6	2.91	-41.4	2.80	-13.5	3.11	+12.0
5000h	4.12	-39.6	3.76	-43.2	3.23	-14.8	3.63	+13.5
7000	5.82	+52.9	5.41	-48.7	4.66	+21.6	3.14	+10.6
7730a	5.23	-51.5	5.14	-49.9	4.60	+22.1	3.35	+10.9
7730b	4.45	+50.2	4.81	-48.9	4.57	-24.6	3.20	-11.6
7850	4.59	+47.9	5.02	-48.8	4.90	-22.4	2.92	+10.4

Results from geometrical fit II

- Fit parameters tabulated for all samples
- All parameters consistent with expected results
 - Expected offsets for solenoid centre: $x = -0.3 \pm 0.4$ mm, $y = -2.2 \pm 0.4$ mm, $z = -0.1 \pm 2.3$ mm
 - Z and R scale factors expected to be 1

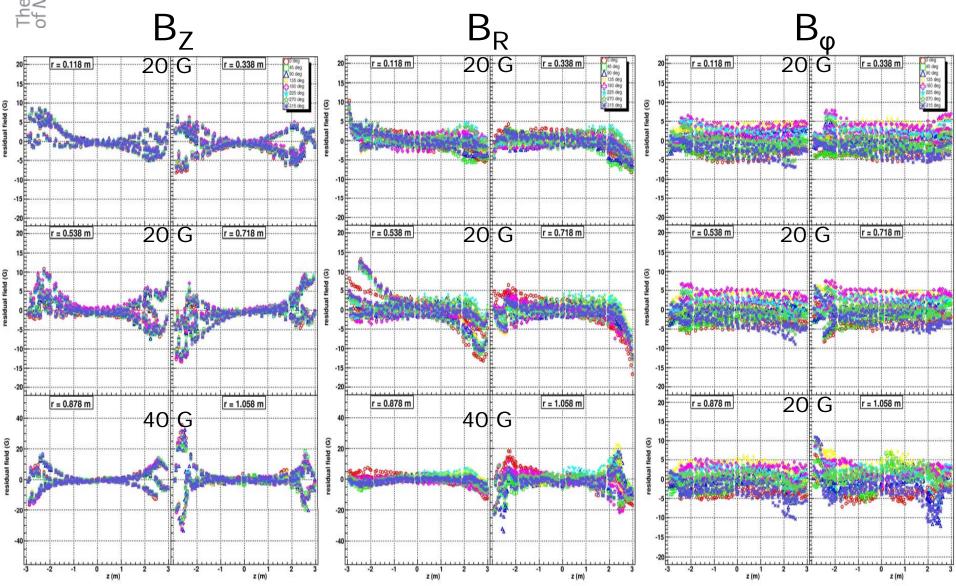
Мар	Offsets (mm)		Angles (mrad)		Scale factors		% iron	
	Х	У	Z	A_{x}	A_{y}	Z	R	at orig
5000	0.44	-2.52	0.36	0.11	0.09	1.00158	0.99900	4.108
5000h	0.47	-2.46	0.35	0.11	0.09	1.0015	0.9991	4.101
7000	0.38	-2.36	0.49	0.15	0.07	1.0014	0.9992	4.075
7730a	0.28	-2.39	0.51	0.13	0.09	1.00121	0.99926	4.0512
7730b	0.29	-2.38	0.56	0.10	0.12	1.00119	0.99932	
7850	0.34	-2.51	0.60	0.12	0.12	1.0013	0.9995	4.060

The University of Manchester

Full fit (geometrical + Maxwell)

- A few features remain in the residuals from the geometrical fit
 - Ripples for |Z|<2m believed to be due to variations in the coil winding density
 - Bigger features at |Z|>2m believed to arise from the coil cross-section not being perfectly circular
 - These effects are more pronounced at the ends of the solenoid
- These features cannot be determined accurately enough to be included in the geometrical model
 - However, they are real fields which should obey Maxwell's equations
- We apply the general Maxwell fit to the residuals to account for these features

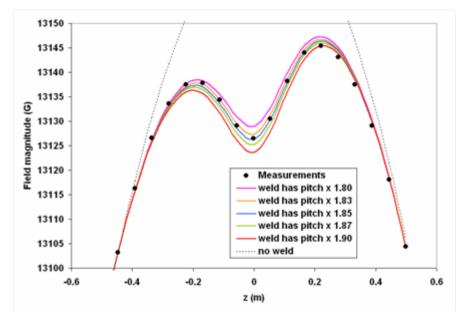
General Maxwell fit

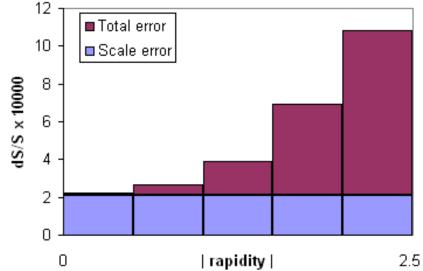

- General fit able to describe any field obeying Maxwell's equations.
- Uses only the field measurements on the surface of a bounding cylinder, including the ends.
- Parameterisation proceeds in three stages:
 - 1. B_z on the cylindrical surface is fitted as Fourier series, giving terms with φ variation of form $\cos(n\varphi + \alpha)$, with radial variation $I_n(\kappa r)$ (modified Bessel function).
 - 2. $B_z^{\text{meas}} B_z^{(1)}$ on the cylinder ends is fitted as a series of Bessel functions, $J_n(\lambda_j r)$ where the λ_j are chosen so the terms vanish for $r = r_{\text{cyl}}$. The z-dependence is of form $\cosh(\mu z)$ or $\sinh(\mu z)$.
 - 3. The multipole terms are calculated from the measurements of B_r on the cylindrical surface, averaged over z, after subtraction of the contribution to B_r from the terms above. (The only relevant terms in B_z are those that are odd in z.)

e University Manchester

Results from full fit I

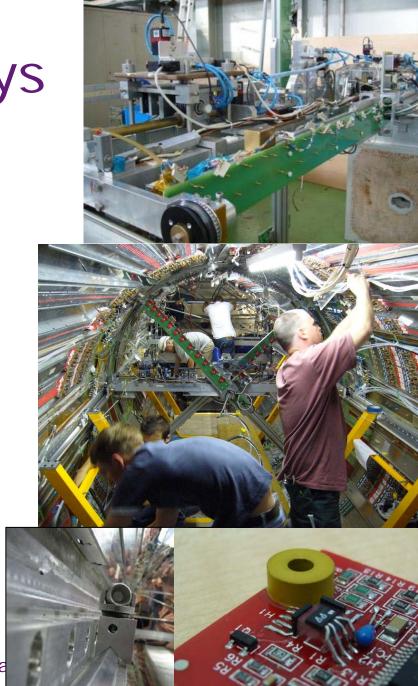
Results from full fit II


- Residuals of all probes reduced significantly
 - Recall that Maxwell fit is made using outermost probes only
 - Fact that the fit matches inner probes as well shows strong evidence that the difference between data and geometrical model is a real field
- Fit quality δS/S also improved at high η


Мар	B_Z	(G)	B _R (G)		Β _φ (G)		δS/S (×10 ⁻⁴)	
	rms	extreme	rms	extreme	rms	extreme	rms	extreme
5000	2.27	-25.1	1.84	-30.1	1.85	+11.5	1.70	+6.2
5000h	3.68	-31.0	3.12	-28.3	2.75	+12.7	2.40	+9.9
7000	4.97	-37.5	4.49	-33.5	3.64	+15.9	1.51	+7.2
7730a	4.34	-37.1	3.52	-33.8	2.90	+15.2	1.29	+6.5
7730b	3.47	-32.3	3.74	-54.1	3.85	+17.0	1.58	+8.4
7850	3.55	-32.6	3.85	-48.8	3.85	-17.2	1.69	+9.0

Systematic errors

- Uncertainty in overall scale
 - Spread in Hall-NMR differences over 4 NMR probes
 - Weld thickness, which influences the Hall-NMR comparison
 - Overall scale error 2.1×10⁻⁴
- Uncertainty in shape of field
 - Considered several "reasonable" changes to fit model
 - Dominant factor is 0.2 mrad uncertainty in orientation of the rotation axes of the mapping machine arms relative to IWV coordinates
 - Overall shape error 5.9×10⁻⁴
- Total uncertainty 6.3×10-4
 - Dominated by scale error at low η, shape error at high η


- The solenoid field mapping team recorded lots of high quality data during a successful field
 - All possible corrections from surveys, probe calibrations and probe alignments have been applied to the data
 - We have determined a fit function satisfying Maxwell's equations which matches each component of the data to within 4 Gauss rms
 - Using this fit, the relative sagitta error is 6.3×10-4
 - · At high rapidity, the systematic errors are dominated by a 0.2 mrad uncertainty in the direction of the field axis relative to the IWV coordinate system

Backup slides

Surveys

- Survey of mapping machine in Building 164
 - Radial positions of Hall cards
 - Z separation between arms
 - Z thickness of arms
- Survey in situ before and after mapping
 - Rotation centre and axis of each arm
 - Position of Z encoder zero
 - Positions of NMR probes
- Survey of ID rails
 - Gradient wrt Inner Warm Vessel coordinates
- Survey of a sample of 9 Hall cards
 - Offsets of BZ, BR, Bf sensors from nominal survey point on card
- Sensor positions known with typical accuracy of 0.2 mm

Jniversity

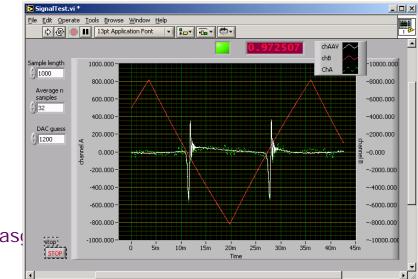
Probe calibrations


Hall sensors

- Response measured at several field strengths, temperatures and orientations (θ,φ)
- Hall voltage decomposed as spherical harmonics for (θ, ϕ) and Chebyshev polynomials for |B|,T

$$V(|B|, Temp, \theta, \varphi)$$

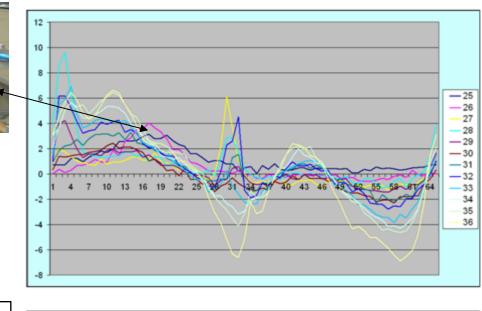
$$= \sum_{k} \sum_{n} \sum_{l} \sum_{m=0}^{l} c_{klm} T_{k}(|B|) d_{nlm} T_{n}(Temp) Y_{lm}(\theta, \varphi)$$


- Low-field calibration (up to 1.4 T): expected accuracy ~2 G, 2 mrad
- High-field calibration (up to 2.5 T): expected accuracy ~10 G, 2 mrad

B measured by NMR compared to B from sensors at 0.885 Tesla

NMR probes

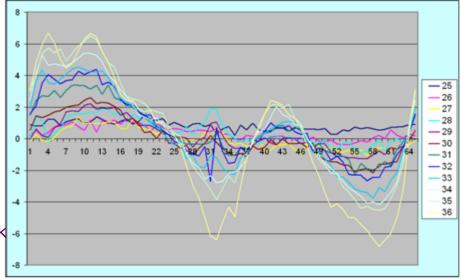
- No additional calibration needed (done by whoever measured Gp = 42.57608 MHz/T)
- Compare proton resonance frequency with reference oscillator
- Intrinsically accurate to 0.1 G



Z motor bearings

Magnetic machine components

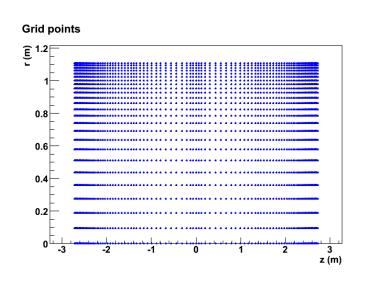
0.0023

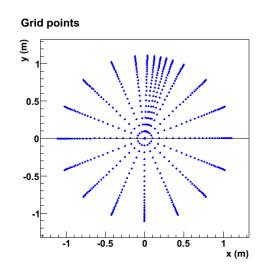

- Perturbation of the magnetic field by the mapping machine was not anticipated
- Some spikes in the data were clearly attributed to components of the mapping machine
- A dipole was subtracted at each component position with field strength chosen to make residuals look smooth

Object	Z (m)	R (m)	Phi (deg)	Strength
Phi encoder	-0.02	0.190	90	0.0090
Phi motor bearings	-0.13	0.378	164	0.0023
Z motor bearings	-0.13	0.772	171	0.0023
Magnetic plug on ESB	-0.04	0.457	9	0.0182
Z encoder	-0.04	1.080	188	0.0056
Z encoder	0.00	1.080	352	0.0056
electrical valve	-0.08	0.865	18	0.0032
electrical valve	-0.08	0.830	162	0.0032

0.830

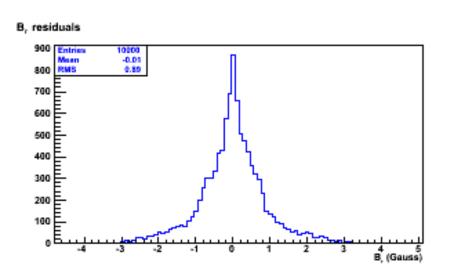
-0.13

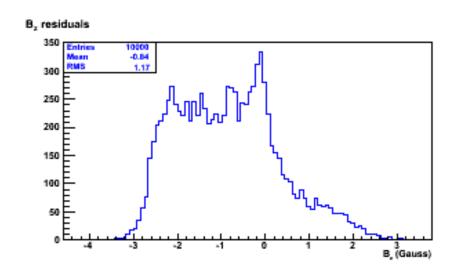


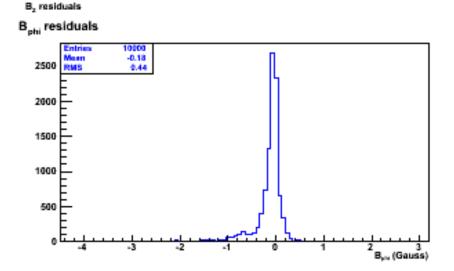


Implementation in athena I

- Map data to be stored in athena as a table of field map values on a grid
 - Cylindrical grid with 113×25×21=59325 points
 - O(2.5 MB) of memory
 - Linear interpolation between grid points






Extra grid points near special features (ends of solenoid, welds, return conductor)

Implementation in athena II

- Linear interpolation in each direction
- Residuals < 3 G throughout most of ID
- Still need to optimise map values

