A Detailed Study of

Third Generation Squarks at LHC

Junichi Kanzaki (KEK) Jul. 8th, 2003, Physics at LHC, Prague On behalf of Kiyotomo Kawagoe / Kobe University and J. Hisano (Tokyo) and M.M. Nojiri (Kyoto)

This talk is based on:

- hep-ph/0204078, Phys. Rev. D66 (2002) 115004
- hep-ph/0304214, submitted to Phys. Rev. D

Please refer to the documents for details.

Introduction

Stop (\tilde{t}) and **sbottom** (\tilde{b}) are special because of Yukawa interaction:

• Stop is lighter than other squarks because of the RGE running effect.

$$m_{ ilde{t}_R} \ll m_{ ilde{t}_L} \ll m_{ ilde{q}}.$$

• $\tilde{t}_{1,2}$ are mixing states of \tilde{t}_R and \tilde{t}_L .

$$\left(egin{array}{ccc} m_{ ilde{t}_R}^2+m_t^2 & -m_t(A_t+\mu\coteta) \ -m_t(A_t+\mu\coteta) & m_{ ilde{t}_L}^2+m_t^2 \end{array}
ight)$$

- Sbottom mixing is also important for large $\tan \beta$ case ($\cot \beta \rightarrow \tan \beta$ in the mass matrix).
- The stop mass $m_{\tilde{t}}$ is related to the Higgs mass m_h via radiative corrections.

$$\delta m_h \sim h_t^4 \log({m_{ ilde{t}}}/{m_t})$$

We want to study stop/sbottom in a model-independent way as far as possible.

Access channels

• " $bb\ell\ell$ + missing E_T " (classical channel)

$$ilde{g}
ightarrow b ilde{b}
ightarrow b b ilde{\chi}_2^0
ightarrow b b \ell \ell ilde{\chi}_1^0$$

This channel works if ${\operatorname{Br}}(ilde\chi^0_2 o \ell \ell ilde\chi^0_1)$ is large.

• "tb + missing E_T " (dominant mode, this analysis) This is a purely hadronic bbjj final state to reconstruct

$$ilde{g}
ightarrow t ilde{t}
ightarrow t b ilde{\chi}_i^\pm$$

and

$$ilde{g}
ightarrow b ilde{b}
ightarrow bt ilde{\chi}_i^\pm$$

We show that we can reproduce parton level distributions in this channel.

Our SUSY Points

- A1, A2: MSUGRA points slightly modified from Point 5. M = 300 GeV, m = 100 GeV, $A = \mp 300$ GeV, $\tan \beta = 10$, $\operatorname{sgn}(\mu) = 1$.
- T1, T2: non-MSUGRA points where stop masses and mixings are changed from A1.
- B, C, G, I: MSUGRA benchmark points where SUSY cross section is relatively high.
- E1, E2: MSUGRA points where only $\tilde{g} \rightarrow t \tilde{t}_1$ is allowed.
- Some other points, including SPS, are studied.

	$m_{ ilde{g}}$	$m_{ ilde{t}_1}$	$m_{ ilde{b}_1}$	$m_{ ilde{b}_2}$	$m_{ ilde{\chi}^-}$	σ_{SUSY}
	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(pb)
A1	707	427	570	613	220	26
A2	706	496	587	614	211	25
T1	707	327	570	613	220	30
T2	707	477	570	612	211	25
В	609	402	504	534	179	56
C	931	636	771	805	304	5
G	886	604	714	763	285	7
I	831	571	648	725	265	10
E1	515	273	521	634	153	77
E2	747	524	770	898	232	8

Monte Carlo Simulation

- 3×10^{6} events (~120 fb⁻¹ or more) at each SUSY point.
- $2 \times 10^8 t\bar{t}$ events (~300 fb⁻¹) as the SM background.
- Calculation of SUSY parameters with ISAJET 7.51.
- Event Generation with PYTHIA 6.161 / HERWIG 6.4.
 - Different jet fragmentation schemes (string and parton-shower).
- Detector Simulation with a fast detector simulation program for the ATLAS experiment (ATLFAST).
 - Jet finding : jet-cone, $\Delta R = 0.4$.
 - b-tag : $\varepsilon_b = 0.6$.
 - τ -tag : $\varepsilon_{\tau} = 0.5$.

Selection of tb candidates

- Preselection
 - $E_T^{
 m miss} > 200$ GeV.
 - $m_{ ext{eff}} > 1000 \; ext{GeV} \; (m_{ ext{eff}} = E_T^{ ext{miss}} + \sum_{ ext{all}} p_T^{ ext{jet}}).$
 - two *b*-jets with $p_T > 30$ GeV.
 - lepton veto : $\min(m_{\ell b}) > 150$ GeV to reduce $t \bar{t}$ background.
 - $4 \leq n_{
 m jet} \leq 6$: number of additional jets with $p_T > 30$ GeV and $|\eta| < 3.0$.
- Look for the best top candidate.
 - a jj pair with a mass m_{jj} within $m_W \pm 15$ GeV, and calculate m_{jjb} .
 - choose the paring which minimizes top $|m_{jjb}-m_t|.$
 - constrain jj as $m_{jj} = m_W$, recalculate m_{jjb} , and require $|m_{jjb} m_t| < 30 \; {
 m GeV}$.

m_{tb} distribution

- (a) m_{tb} distribution from 3×10^{6} SUSY events (120 fb⁻¹) at our reference point A1.
- (b) combinatorial background estimated by "W-sidebands".
- (c) m_{tb} distribution after subtracting the background. There is a clear edge; However, note that the edge is composed of two sources:

$$egin{array}{lll} &- ilde{g}
ightarrow t ilde{t}_1
ightarrow tb ilde{\chi}_1^\pm \ &- ilde{g}
ightarrow b ilde{b}_1
ightarrow bt ilde{\chi}_1^\pm \end{array}$$

(d) same as (c), but only for the decay mode $\tilde{g} \rightarrow t \tilde{t}_1 \rightarrow t b \tilde{\chi}_1^{\pm}$.

• Ideal distribution:

 $d\Gamma/dm_{tb} \propto m_{tb}.$

• fit function: a smeared distribution

$$f(m_{tb}) = rac{h}{M_{tb}^{ ext{fit}}} \int_{m_t+m_b}^{M_{tb}^{ ext{fit}}} rac{m}{\sqrt{2\pi}\sigma} e^{-1/2[(m-m_{tb})/\sigma]^2} dm$$

entries

on a linear background.

• We obtain the end point M_{tb}^{fit} and the edge height h from the fit.

The end point

The fitted end point M_{tb}^{fit} should be compared with the weighted end point M_{tb}^{w} , which is defined as

$$M_{tb}^{w} = \frac{\operatorname{Br}(\tilde{g} \to \tilde{t}_{1} \to \chi^{+}) M_{tb}^{max}(\tilde{t}) + \operatorname{Br}(\tilde{g} \to \tilde{b}_{1} \to \chi^{+}) M_{tb}^{max}(\tilde{b}_{1})}{\operatorname{Br}(\tilde{g} \to \tilde{t}_{1} \to \chi^{+}) + \operatorname{Br}(\tilde{g} \to \tilde{b}_{1} \to \chi^{+})}$$

A very good linear correlation in most cases !!

The edge height

We can estimate number of the "edge" events $N_{
m edge}$ by the trapezoid rule:

$$N_{\mathrm{fit}} = rac{h}{2} \left(rac{m_t}{M_{tb}^{\mathrm{fit}}} + 1
ight) imes rac{M_{tb}^{\mathrm{fit}} - m_t}{\Delta m}$$

where Δm is the bin width.

- good linear correlation between $N_{
 m fit}$ and $N_{
 m edge}$,
- but some dependence on generator and jet-definition

Branching ratios

- $N_{\rm all}$ is the number of events after subtracting the sideband background.
- Good correlation between

 $N_{\rm edge}/N_{\rm all}$ and ${\rm Br}({\rm edge})/{\rm Br}(\tilde{g} \rightarrow bbX)$, at the points where $\tilde{q}\tilde{g}$ production is dominant (two *b* quarks in the final state).

- The generator dependence is canceled.
- Some points are away from the line:
 - C: events with leptons from $\tilde{\chi}_1^{\pm}$ decay are killed by the lepton VETO.
 - E1, E2: $\tilde{g}\tilde{g}$ production is dominant (four *b* quarks in the final state).
 - T1: $ilde{t}_1 ilde{t}_1$ contributes to $N_{
 m all}$.

Top polarization effect

• The top quark from \tilde{b}, \tilde{t} and \tilde{g} decays is polarized:

$$ilde{b}
ightarrow t ilde{\chi}_1^+ : t_L ext{ if } ilde{\chi}_1^+ \sim ilde{W},$$

 $- ilde{g}
ightarrow t ilde{t}_1 : ilde{t}_1 = ilde{t}_R \cos heta_t + ilde{t}_L \sin heta_t ext{ and } \mathcal{L} \propto ilde{g} t_R ilde{t}_R + ilde{g} t_L ilde{t}_L$

• The bottom quark in $t \rightarrow bW$ tends to go opposite to the top spin direction:

$$rac{1}{\Gamma_t}rac{d\Gamma_t}{d\cos heta} \propto \left(rac{m_t}{m_W}
ight)^2 \sin^2rac{ heta}{2} + \cos^2rac{ heta}{2}$$

where θ is the angle between the bottom direction and the top spin.

• For example, in the decay $\tilde{g} \to t\tilde{t}_1 \to (bW)(b\tilde{\chi}_1^+)$, distribution of the invariant mass m_{bb} must be sensitive to the top polarization.

m_{bb} distribution

Maximum sensitivity is expected near the m_{tb} end point, where top and bottom go to back-toback.

Select tb events with m_{tb} near the endpoint

- \rightarrow make m_{bb} distribution.
 - Simulation is made with HER-WIG+ATLFAST assuming $\tilde{t}_1 = \tilde{t}_L$ (\tilde{t}_R) and the mass spectrum at our reference point A1.
 - The distributions are made for the decay $ilde{g}
 ightarrow t ilde{t}
 ightarrow t b ilde{\chi}_1^+$ only.
 - Statistically tough, but feasible if large $\sigma \cdot \operatorname{Br}$ and $\int \mathcal{L} dt$.

solid (dotted) histogram:

 $\tilde{t}_1 = \tilde{t}_L(\tilde{t}_R).$

Summary

- Stop/sbottom properties can be studied by reconstructing the m_{tb} distribution.
 - good correlation between M_{tb}^{fit} and M_{tb}^{w} .
 - good correlation between N_{fit} and N_{edge} .
 - good correlation between $N_{\mathrm{fit}}/N_{\mathrm{all}}$ and $\mathrm{Br}(\mathrm{edge})/\mathrm{Br}(ilde{g}
 ightarrow bbX).$
- Top polarization effect might be measured.
- Please refer to hep-ph/0304214 for
 - theoretical interpretations,
 - combination with other measurements,
 - event generator dependence
 - jet-algorithm dependence