A Detailed Study of
 Third Generation Squarks at LHC

Junichi Kanzaki (KEK)
Jul. 8th, 2003, Physics at LHC, Prague
On behalf of
Kiyotomo Kawagoe / Kobe University and
J. Hisano (Tokyo) and M.M. Nojiri (Kyoto)

This talk is based on:

- hep-ph/0204078, Phys. Rev. D66 (2002) 115004
- hep-ph/0304214, submitted to Phys. Rev. D

Please refer to the documents for details.

Introduction

Stop (\tilde{t}) and sbottom ($\tilde{b})$ are special because of Yukawa interaction:

- Stop is lighter than other squarks because of the RGE running effect.

$$
m_{\tilde{t}_{R}} \ll m_{\tilde{t}_{L}} \ll m_{\tilde{q}} .
$$

- $\tilde{t}_{1,2}$ are mixing states of \tilde{t}_{R} and \tilde{t}_{L}.

$$
\left(\begin{array}{cc}
m_{\tilde{t}_{R}}^{2}+m_{t}^{2} & -m_{t}\left(A_{t}+\mu \cot \beta\right) \\
-m_{t}\left(A_{t}+\mu \cot \beta\right) & m_{\tilde{t}_{L}}^{2}+m_{t}^{2}
\end{array}\right)
$$

- Sbottom mixing is also important for large $\tan \beta$ case $(\cot \beta \rightarrow \tan \beta$ in the mass matrix).
- The stop mass $m_{\tilde{t}}$ is related to the Higgs mass m_{h} via radiative corrections.

$$
\delta m_{h} \sim h_{t}^{4} \log \left(m_{\tilde{t}} / m_{t}\right)
$$

We want to study stop/sbottom in a model-independent way as far as possible.

Access channels

- "bbll + missing \boldsymbol{E}_{T} " (classical channel)

$$
\tilde{g} \rightarrow b \tilde{b} \rightarrow b b \tilde{\chi}_{2}^{0} \rightarrow b b \ell \ell \tilde{\chi}_{1}^{0}
$$

This channel works if $\operatorname{Br}\left(\tilde{\chi}_{2}^{0} \rightarrow \ell \ell \tilde{\chi}_{1}^{0}\right)$ is large.

- " $t b+$ missing E_{T} " (dominant mode, this analysis)

This is a purely hadronic bbjj final state to reconstruct

$$
\tilde{g} \rightarrow t \tilde{t} \rightarrow t b \tilde{\chi}_{i}^{ \pm}
$$

and

$$
\tilde{g} \rightarrow b \tilde{b} \rightarrow b t \tilde{\chi}_{i}^{ \pm}
$$

We show that we can reproduce parton level distributions in this channel.

Our SUSY Points

- A1, A2: MSUGRA points slightly modified from Point 5.

$$
\begin{aligned}
& M=300 \mathrm{GeV}, m= \\
& 100 \mathrm{GeV}, A=\mp 300 \mathrm{GeV} \\
& \tan \beta=10, \operatorname{sgn}(\mu)=1
\end{aligned}
$$

- T1, T2: non-MSUGRA points where stop masses and mixings are changed from A1.
- B, C, G, I: MSUGRA benchmark points where SUSY cross section is relatively high.
- E1, E2: MSUGRA points where only $\tilde{g} \rightarrow t \tilde{t}_{1}$ is allowed.

	$m_{\tilde{g}}$ (GeV)	$m_{\tilde{t}_{1}}$ (GeV)	$m_{\tilde{b}_{1}}$ (GeV)	$m_{\tilde{b}_{2}}$ (GeV)	$m_{\tilde{\chi}^{-}}$ (GeV)	$\sigma_{S U S Y}$ (pb)
A1	707	427	570	613	220	26
A2	706	496	587	614	211	25
T1	707	327	570	613	220	30
T2	707	477	570	612	211	25
B	609	402	504	534	179	56
C	931	636	771	805	304	5
G	886	604	714	763	285	7
I	831	571	648	725	265	10
E1	515	273	521	634	153	77
E2	747	524	770	898	232	8

- Some other points, including SPS, are studied.

Monte Carlo Simulation

- 3×10^{6} events ($\sim 120 \mathrm{fb}^{-1}$ or more) at each SUSY point.
- $2 \times 10^{8} t \bar{t}$ events ($\sim 300 \mathrm{fb}^{-1}$) as the SM background.
- Calculation of SUSY parameters with ISAJET 7.51.
- Event Generation with PYTHIA 6.161 / HERWIG 6.4.
- Different jet fragmentation schemes (string and parton-shower).
- Detector Simulation with a fast detector simulation program for the ATLAS experiment (ATLFAST).
- Jet finding : jet-cone, $\Delta R=0.4$.
$-b-\operatorname{tag}: \varepsilon_{b}=0.6$.
$-\tau$-tag $: \varepsilon_{\tau}=0.5$.

Selection of $t b$ candidates

- Preselection
- $E_{T}^{\text {miss }}>200 \mathrm{GeV}$.
$-m_{\text {eff }}>1000 \mathrm{GeV}\left(m_{\text {eff }}=E_{T}^{\mathrm{miss}}+\sum_{\text {all }} p_{T}^{\mathrm{jet}}\right)$.
- two b-jets with $p_{T}>30 \mathrm{GeV}$.
- lepton veto : $\min \left(m_{\ell b}\right)>150 \mathrm{GeV}$ to reduce $t \bar{t}$ background.
$-4 \leq n_{\text {jet }} \leq 6:$ number of additional jets with $p_{T}>30 \mathrm{GeV}$ and $|\boldsymbol{\eta}|<3.0$.
- Look for the best top candidate.
- a $j \boldsymbol{j}$ pair with a mass $m_{j j}$ within $m_{W} \pm 15 \mathrm{GeV}$, and calculate $m_{j j b}$.
- choose the paring which minimizes top $\left|m_{j j b}-m_{t}\right|$.
- constrain $j \boldsymbol{j}$ as $m_{j j}=m_{W}$, recalculate $\boldsymbol{m}_{\boldsymbol{j} \boldsymbol{j} b}$, and require $\mid \boldsymbol{m}_{\boldsymbol{j} \boldsymbol{j} \boldsymbol{b}}$ -
 $m_{t} \mid<30 \mathrm{GeV}$.

$m_{t b}$ distribution

(a) $m_{t b}$ distribution from 3×10^{6} SUSY events ($120 \mathrm{fb}^{-1}$) at our reference point A 1 .
(b) combinatorial background estimated by " \boldsymbol{W}-sidebands".
(c) $m_{t b}$ distribution after subtracting the background. There is a clear edge; However, note that the edge is composed of two sources:
$-\tilde{\boldsymbol{g}} \rightarrow \boldsymbol{t} \tilde{\boldsymbol{t}}_{1} \rightarrow \boldsymbol{t b} \tilde{\chi}_{1}^{ \pm}$
$-\tilde{g} \rightarrow b \tilde{b}_{1} \rightarrow b t \tilde{\chi}_{1}^{ \pm}$
(d) same as (c), but only for the decay mode $\tilde{\boldsymbol{g}} \rightarrow \boldsymbol{t} \tilde{t}_{1} \rightarrow \boldsymbol{t} b \tilde{\chi}_{1}^{ \pm}$.

Fit of $m_{t b}$ distribution

- Ideal distribution:

$$
d \Gamma / d m_{t b} \propto m_{t b}
$$

- fit function: a smeared distribution

$$
f\left(m_{t b}\right)=\frac{h}{M_{t b}^{\mathrm{fit}}} \int_{m_{t}+m_{b}}^{M_{t b}^{\mathrm{ftt}}} \frac{m}{\sqrt{2 \pi} \sigma} e^{-1 / 2\left[\left(m-m_{t b}\right) / \sigma\right]^{2}} d m
$$

on a linear background.

- We obtain the end point $M_{t b}^{\mathrm{fit}}$ and the edge height h from the fit.

The end point

The fitted end point $M_{t b}^{\text {fit }}$ should be compared with the weighted end point $M_{t b}^{\mathrm{w}}$, which is defined as

$$
\boldsymbol{M}_{t \boldsymbol{b}}^{\mathrm{w}}=\frac{\operatorname{Br}\left(\tilde{\boldsymbol{g}} \rightarrow \tilde{\boldsymbol{t}}_{\boldsymbol{1}} \rightarrow \chi^{+}\right) \boldsymbol{M}_{\boldsymbol{t}}^{\max }(\tilde{\boldsymbol{t}})+\operatorname{Br}\left(\tilde{\boldsymbol{g}} \rightarrow \tilde{\boldsymbol{b}}_{1} \rightarrow \chi^{+}\right) \boldsymbol{M}_{\boldsymbol{t}}^{\max }\left(\tilde{\boldsymbol{b}}_{1}\right)}{\operatorname{Br}\left(\tilde{\boldsymbol{g}} \rightarrow \tilde{\boldsymbol{t}}_{1} \rightarrow \chi^{+}\right)+\operatorname{Br}\left(\tilde{\boldsymbol{g}} \rightarrow \tilde{\boldsymbol{b}}_{1} \rightarrow \chi^{+}\right)}
$$

A very good linear correlation in most cases !!

The edge height

We can estimate number of the "edge" events $N_{\text {edge }}$ by the trapezoid rule:

$$
N_{\mathrm{fit}}=\frac{h}{2}\left(\frac{m_{t}}{M_{t b}^{\mathrm{fit}}}+1\right) \times \frac{M_{t b}^{\mathrm{fit}}-m_{t}}{\Delta m}
$$

where Δm is the bin width.

- good linear correlation between $N_{\text {fit }}$ and $N_{\text {edge }}$,
- but some dependence on generator and jet-definition

Branching ratios

- $N_{\text {all }}$ is the number of events after subtracting the sideband background.
- Good correlation between $\boldsymbol{N}_{\text {edge }} / \boldsymbol{N}_{\text {all }}$ and Br (edge) $/ \operatorname{Br}(\tilde{\boldsymbol{g}} \rightarrow$ $b b X)$, at the points where $\tilde{q} \tilde{g}$ production is dominant (two b quarks in the final state).
- The generator dependence is canceled.
- Some points are away from the line:
- C: events with leptons from $\tilde{\chi}_{1}^{ \pm}$decay are killed by the lepton VETO.

- E1, E2: $\tilde{g} \tilde{g}$ production is dominant (four b quarks in the final state).
- T1: $\tilde{t}_{1} \tilde{t}_{1}$ contributes to $N_{\text {all }}$.

Top polarization effect

- The top quark from \tilde{b}, \tilde{t} and \tilde{g} decays is polarized:
$-\tilde{b} \rightarrow t \tilde{\chi}_{1}^{+}: t_{L}$ if $\tilde{\chi}_{1}^{+} \sim \tilde{W}$,
$-\tilde{g} \rightarrow t \tilde{t}_{1}: \tilde{t}_{1}=\tilde{t}_{R} \cos \theta_{t}+\tilde{t}_{L} \sin \theta_{t}$ and $\mathcal{L} \propto \tilde{g} t_{R} \tilde{t}_{R}+\tilde{g} t_{L} \tilde{t}_{L}$
- The bottom quark in $t \rightarrow b W$ tends to go opposite to the top spin direction:

$$
\frac{1}{\Gamma_{t}} \frac{d \Gamma_{t}}{d \cos \theta} \propto\left(\frac{m_{t}}{m_{W}}\right)^{2} \sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}
$$

where θ is the angle between the bottom direction and the top spin.

- For example, in the decay $\tilde{\boldsymbol{g}} \rightarrow \boldsymbol{t} \tilde{\boldsymbol{t}}_{1} \rightarrow(b W)\left(b \tilde{\chi}_{1}^{+}\right)$, distribution of the invariant mass $\boldsymbol{m}_{b b}$ must be sensitive to the top polarization.

$m_{b b}$ distribution

Maximum sensitivity is expected near the $m_{t b}$ end point, where top and bottom go to back-toback.

Select $t b$ events with $m_{t b}$ near the endpoint
\rightarrow make $m_{b b}$ distribution.

- Simulation is made with HERWIG+ATLFAST assuming $\tilde{t}_{1}=\tilde{t}_{L}$ $\left(\tilde{t}_{R}\right)$ and the mass spectrum at our reference point A1.
- The distributions are made for the decay $\tilde{\boldsymbol{g}} \rightarrow \boldsymbol{t} \tilde{t} \rightarrow \boldsymbol{t} b \tilde{\chi}_{1}^{+}$only.
- Statistically tough, but feasible if large $\sigma \cdot \mathrm{Br}$ and $\int \mathcal{L} d t$.

solid (dotted) histogram:

$$
\tilde{t}_{1}=\tilde{t}_{L}\left(\tilde{t}_{R}\right)
$$

Summary

- Stop/sbottom properties can be studied by reconstructing the $m_{t b}$ distribution.
- good correlation between $M_{t b}^{\text {fit }}$ and $M_{t b}^{\mathrm{w}}$.
- good correlation between $N_{\text {fit }}$ and $N_{\text {edge }}$.
- good correlation between $\boldsymbol{N}_{\text {fit }} / \boldsymbol{N}_{\text {all }}$ and $\operatorname{Br}($ edge $) / \operatorname{Br}(\tilde{\boldsymbol{g}} \rightarrow \boldsymbol{b} \boldsymbol{b} \boldsymbol{X})$.
- Top polarization effect might be measured.
- Please refer to hep-ph/0304214 for
- theoretical interpretations,
- combination with other measurements,
- event generator dependence
- jet-algorithm dependence

