Higgs Searches in the Vector Boson Fusion Channels in ATLAS

> Junichi Kanzaki KEK ATLAS Group

Physics at LHC Prague, July 7th, 2003

Outline

- Higgs Production and Decay at LHC
- Introduction to Vector Boson Fusion (VBF) Processes
- Major Detector Issues for ATLAS
- Analysis of VBF H -> WW* and Results
- Analysis of VBF H -> $\tau\tau$ and Results
- Combined Results
- Summary and Prospects

Higgs Production Cross Section

Higgs Searches before "VBF"

Light Higgs search before "VBF":

- γγ: direct production by gluon fusion
- bb: top-guark associated production ttH(->bb)

No single mode can observe light

Higgs with 30fb⁻¹ Pioneering works in applying "VBF" to the light Higgs search by D. Rainwater and his colleagues:

- yy: D. Rainwater and D. Zeppenfeld, JHEP 9712:005, 1997
- $\tau\tau$: D. Rainwater, D. Zeppenfeld and K. Hagiwara, Phys. Rev. D59:014037, 1999
- WW*: D. Rainwater and D. Zeppenfeld, Phys. Rev. D60:113004, 1999, Erratum-ibid. D61:099901, 2000.

Higgs Decay Branching Ratios

• m_H < 2m_W bb, ττ γγ WW*, ZZ*

m_H ≈ 2m_W
 WW dominates
 Higgs decay

• m_H > 2m_W WW, ZZ

Low Mass Higgs via VBF

Low mass region is especially important.

- LEP direct limit (m_H > 115 GeV)
- EW fit constraint (m_H < 211 GeV, 95%C.L.)
- H -> WW* -> Ilvv, lvqq
 very effective for m_H > 130 GeV
- Η -> ττ -> ΙΙ, Ιh (+ p_T^{miss})

sensitive in the region close to LEP direct limit

• H -> үү

good around 120 GeV

• H -> bb

important for the Higgs coupling measurement large background from QCD processes trigger efficiency is low

Vector Boson Fusion Production

- Two high PT jets with large $\Delta\eta$ separation
- Low QCD activities in the central region
- Possibility to observe different decay modes in the same production process
- Promising to observe invisible Higgs decays (relevant for beyond the SM Higgs)

Jet Pair with Large Rapidity Gap

Comparison between VBF Higgs events vs. tt background

Higgs Signal reconstructed - dots parton level - solid hist

tt backgrounddashed hist

Tagging Forward Jets

- Efficiency is critical.
- Full simulation used for fast simulation parametrization
 - -> parametrized for fast simulation
- Double tag efficiency ~50%

≈ 0.7×0.7

Efficiency for reconstructing a tag jet

Central Jet Veto

- For Higgs signal, central jet activity is suppressed due to the lack of color exchange between the quarks.
 - Most background processes there is color flow in t-channel
- Pile up effects introduce fake central jets
 - Small at low luminosity -> P_T > 20 GeV
 - Serious at high luminosity
 -> P_T > 30 GeV or higher

VBF H -> WW*

- Di-lepton mode: H -> WW^* -> I_VI_V
 - clean signal
- Lepton + two jets mode: H -> WW* -> lvjj
 - larger branching ratio
 - large background
- Background: tt, WWjj(EW)
- Lepton angular correlation is effective to suppress background for H -> WW -> II mode.

Transverse Mass Distribution m_H=160GeV (only eµ)

VBF H -> WW*

 Lepton angular correlation shows evidence of Spin-O resonance in H -> WW -> II modes

 $m_{H}\text{=}160GeV,$ $e\mu$ mode without lepton correlation cut

Junic

Results of WW* channel

VBF Η -> ττ

- Two types of final states:
 - lepton+lepton mode: H -> $\tau\tau$ -> $|\nu\nu|\nu\nu$
 - lepton+hadron mode: H -> $\tau\tau$ -> lvvhv
- $M_{\tau\tau}$ reconstruction using collinear approximation
 - Mass resolution ≈ 10%
- Background:
 - Zjj (EW and QCD)
 - tt and W production

VBF Η -> ττ

 $M_{\tau\tau}$ distributions

ll mode, m_H=120 GeV for 30fb⁻¹

Results of VBF H -> $\tau\tau$

With 30fb^{-1} :

m _H [GeV]	110	120	130	140	150
Combined Statistical Significance	3.7	5.7	5.7	4.8	2.4

* 10% uncertainty of the background is assumed determined from Z -> $\tau\tau$ resonance shape of real data

• $\tau\tau$ decay modes above 5- σ significance over the mass range:

```
115 < m<sub>н</sub> < 140 GeV
```

with 30 fb⁻¹. (LEP direct limit $m_{\mu} > 115$ GeV)

Combined Results

Combined Results

Summary

- The vector boson fusion channels provide a large discovery potential even for a small integrated luminosities.
- Tag jets in the forward region and a low jet activity in the central region of the detector allow for a significant background rejection.
- The VBF H -> WW* channel provides a large discovery potential to the ATLAS experiment.

~ $135 < m_{H} < 190 \ GeV/c^2 \ (10 \ fb^{-1})$

- The VBF H -> $\tau\tau$ channel also contributes in the mass region: m_H < 140 GeV/c² (30fb⁻¹)
 - Important for a measurement of the Higgs boson coupling to fermions.
- \cdot Combining above channels, the full mass range up to $2m_Z$ can be covered with $30 {\rm fb}^{-1}$.

Prospects

- On-going analysis for other decay modes: H -> $\gamma\gamma$, bb and invisible
- Extend to intermediate mass region (H->WW and ZZ channels)

WW -> lvqq m_{H} > 300GeV -> $2m_{Z}$

WW -> lvlv and ZZ->llqq (on going)

- Contribution to the measurement of Higgs properties
- More understanding on the detector performance
 Precise estimation on the tag efficiency of forward jets
- More understanding on the higher order MC generations
 Central jet veto is sensitive to the multi-jet production rate
 Tails in Z->ττ background should be understood better in H->ττ analysis